Special Issue "Advanced Technology of Distributed Space Systems: Formation-Flying, Swarms, and Constellations"

A special issue of Aerospace (ISSN 2226-4310). This special issue belongs to the section "Astronautics & Space Science".

Deadline for manuscript submissions: 31 December 2023 | Viewed by 682

Special Issue Editors

1. Yinhe Hangtian (Beijing) Internet Technology Co., Ltd., Beijing 100192, China
2. Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150006, China
Interests: satellite internet; aerospace communication; spacecraft navigation and control; spacecraft formation flying; space mission analysis and design of small satellites; visual perception
Dr. Yafei Zhao
E-Mail Website
Guest Editor
School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Interests: LEO satellite communication; communication and navigation integration; orbital dynamics and control; UAV swarm communication
Dr. Tao Nie
E-Mail Website
Guest Editor
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Interests: spacecraft orbital dynamics; spacecraft formation design and control; distributed spacecraft system technology
Dr. Xiangtian Zhao
E-Mail Website
Guest Editor
School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Interests: spatial coordinated perception and control; spacecraft navigation and control; visual servoing

Special Issue Information

Dear Colleagues,

Distributed Space Systems (DSS) include formation-flying, swarms, and constellations, which enable large spacecraft functionality to be distributed among several smaller, less expensive, and cooperative spacecraft. It has become increasingly crucial for a variety of space missions, including Earth monitoring and environmental research, deep space exploration, space debris monitoring and tracking, in-orbit servicing, satellite navigation and communication, real-time remote sensing, etc. 

Despite significant research interest in the topic of DSS over the past decade, there are still many challenges that need to be addressed. These include nonlinearity, convergence time constraints, collision avoidance, agile formation re-configuration, limited energy, computation and communication resources, time delay, routing scheme, constellation coverage optimization, etc. 

In this Special Issue, we aim to present contributions that add value to the advanced technologies of DSS. We invite submissions related to various areas of interest, including but not limited to:

  • Design and analysis of novel distributed space systems;
  • Advanced modeling and control theory;
  • Multi-spacecraft coordinated perception and navigation;
  • Networking technology of satellite swarms;
  • Space-based joint sensing, communication, and computation;
  • Design, control, and evaluation of LEO mega-constellations.

Prof. Dr. Shijie Zhang
Dr. Yafei Zhao
Dr. Tao Nie
Dr. Xiangtian Zhao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • distributed space system
  • spacecraft formation flying
  • swarm
  • constellation
  • coordinated perception and control
  • collision avoidance
  • satellite networking
  • joint sensing, communication, and computation

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 1346 KiB  
Article
Distributed Robust Formation Tracking Control for Quadrotor UAVs with Unknown Parameters and Uncertain Disturbances
Aerospace 2023, 10(10), 845; https://doi.org/10.3390/aerospace10100845 - 28 Sep 2023
Viewed by 411
Abstract
In this paper, the distributed formation tracking control problem of quadrotor unmanned aerial vehicles is considered. Adaptive backstepping inherently accommodates model uncertainties and external disturbances, making it a robust choice for the dynamic and unpredictable environments in which unmanned aerial vehicles operate. This [...] Read more.
In this paper, the distributed formation tracking control problem of quadrotor unmanned aerial vehicles is considered. Adaptive backstepping inherently accommodates model uncertainties and external disturbances, making it a robust choice for the dynamic and unpredictable environments in which unmanned aerial vehicles operate. This paper designs a formation flight control scheme for quadrotor unmanned aerial vehicles based on adaptive backstepping technology. The proposed control scheme is divided into two parts. For the position subsystem, a distributed robust formation tracking control scheme is developed to achieve formation flight of quadrotor unmanned aerial vehicles and track the desired flight trajectory. For the attitude subsystem, an adaptive disturbance rejection control scheme is proposed to achieve attitude stabilization during unmanned aerial vehicle flight under uncertain disturbances. Compared to existing results, the novelty of this paper lies in presenting a disturbance rejection flight control scheme for actual quadrotor unmanned aerial vehicle formations, without the need to know the model parameters of each unmanned aerial vehicle. Finally, a quadrotor unmanned aerial vehicle swarm system is used to verify the effectiveness of the proposed control scheme. Full article
Show Figures

Figure 1

Back to TopTop