Next Issue
Volume 3, June
Previous Issue
Volume 2, December
 
 

Seeds, Volume 3, Issue 1 (March 2024) – 13 articles

Cover Story (view full-size image): Sesame (Sesamum indicum), a highly valued oilseed, faces challenges in cultivation, especially in regions susceptible to environmental stressors. This study investigates the interactive effects of salinity and temperature on sesame seed germination. Two cultivars, Darab 1 and Oltan, were subjected to various salinity levels (−3 to −12 bars) and temperatures (15 °C, 20 °C, and 25 °C). Results revealed that at 15 °C, salinity levels beyond -3 bars significantly reduced germination, while at 25 °C, 40% and 62% germination rates were recorded even at −12 bars for Darab 1 and Oltan, respectively. This study highlights the importance of temperature in mitigating the inhibitory effects of salinity on germination. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 1963 KiB  
Article
Magneto-Priming of Seeds Decreases the Saline Effect of Wastewater Irrigation on Broccoli Germination and Seedling Growth
by Julio Gutierrez, Francisco Alonso, Jose Alvarez, María Victoria Carbonell, Elvira Martinez, Mercedes Florez, María del Mar Delgado, Brenda Katherine Franco and Claudia Hernandez-Aguilar
Seeds 2024, 3(1), 169-178; https://doi.org/10.3390/seeds3010013 - 18 Mar 2024
Viewed by 371
Abstract
Crop plant varieties exhibit diverse reactions when subjected to wastewater irrigation in terms of seed germination, seedling development, and overall productivity. Magneto-priming, which involves treating seeds with an appropriate magnetic field, is gaining popularity as the preferred technique due to its effectiveness and [...] Read more.
Crop plant varieties exhibit diverse reactions when subjected to wastewater irrigation in terms of seed germination, seedling development, and overall productivity. Magneto-priming, which involves treating seeds with an appropriate magnetic field, is gaining popularity as the preferred technique due to its effectiveness and environmentally friendly characteristics for improving seed vigour, growth, and plant yield. In this study, magneto-primed and non-primed broccoli seeds were irrigated with distilled or wastewater and kept under observation for a 10-day period to record seedling growth. A laboratory study was conducted to evaluate the impact of magneto-priming on broccoli seeds with a homogeneous stationary magnetic-field strength of 5.9 mT for 1 h. They were irrigated with two types of water: distilled and wastewater. Another test was performed to evaluate the effect of 1-h and 2-h magneto-priming on seed germination when seeds were irrigated with wastewater. From the results, the broccoli seedlings irrigated with distilled water grew higher and heavier than the ones irrigated with wastewater, probably due to the significant amounts of salts in organic wastewater. Nonetheless, the saline effect of wastewater was ameliorated when seeds were previously magneto-primed. All the germination parameters of broccoli seeds irrigated with wastewater were significantly reduced when seeds were magneto-primed for both periods. Full article
Show Figures

Figure 1

20 pages, 3625 KiB  
Article
Genetic Parameters in Mesocotyl Elongation and Principal Components for Corn in High Valleys, Mexico
by Antonio Villalobos-González, Ignacio Benítez-Riquelme, Fernando Castillo-González, Ma. del Carmen Mendoza-Castillo and Alejandro Espinosa-Calderón
Seeds 2024, 3(1), 149-168; https://doi.org/10.3390/seeds3010012 - 13 Mar 2024
Viewed by 487
Abstract
Corn germplasm with different mesocotyl elongation was characterized for High Valleys in Mexico by estimating the general combinatory aptitude (GCA), specific combinatory aptitude (SCA), heterosis (H), inbreeding depression (ID) and principal component aptitude (PCA), with the purpose of directing the improvement for deep [...] Read more.
Corn germplasm with different mesocotyl elongation was characterized for High Valleys in Mexico by estimating the general combinatory aptitude (GCA), specific combinatory aptitude (SCA), heterosis (H), inbreeding depression (ID) and principal component aptitude (PCA), with the purpose of directing the improvement for deep sowing. The hypothesis was that the parents and crosses of mesocotyl present variability in seedling and adult plant traits based on deep sowing. The 36 F1 and F2 crosses—derived from nine parents, three with short mesocotyl (S), three medium (M) and three long (L), obtained through Griffing diallel II—plus the parents were planted in sand beds and polyethylene bags in a greenhouse during the spring–summer cycles of 2021 and 2022. The following traits were measured: length of mesocotyl (LM), length of coleoptile, total seedling dry matter and 10 cob traits in addition to total dry matter. In 11 of the 14 traits, there was a positive and significant correlation (p ≤ 0.05) between the GCA of the parents and their LM. The highest SCA, H and ID (p ≤ 0.05) were for crosses L × L for all the traits measured. When comparing the GCA/SCA proportions, this relation varied from 0.76 to 0.97, which points to practically equal additive effects with those of dominance; however, in parents and L × L crosses, this relation was on average 0.94, 1.07 in M × M, 0.22 in S × S and 0.36 in L × S. In both F1 and F2, the variation was explained by two principal components: 89.5% for GCA and 73.4% for SCA. In both generations, the parents with higher GCA were H-48, HS-2 and Promesa, the three with long mesocotyl, while those with the highest GCA were crosses between these three hybrids. Full article
Show Figures

Figure 1

16 pages, 1689 KiB  
Review
Soybean Seed Coat Cracks and Green Seeds—Predisposing Conditions, Identification and Management
by Ernane Miranda Lemes and Hugo César Rodrigues Moreira Catão
Seeds 2024, 3(1), 133-148; https://doi.org/10.3390/seeds3010011 - 12 Mar 2024
Viewed by 606
Abstract
Seed coat cracking and green seeds threaten soybean crop production. Seed coat cracking results from a complex interplay of genetic factors, environmental stresses, and crop management practices. Green seeds, linked to water deficit, nutritional deficiencies, and environmental stresses, exhibit reduced quality and viability. [...] Read more.
Seed coat cracking and green seeds threaten soybean crop production. Seed coat cracking results from a complex interplay of genetic factors, environmental stresses, and crop management practices. Green seeds, linked to water deficit, nutritional deficiencies, and environmental stresses, exhibit reduced quality and viability. The intricate relationships between seed coat integrity and seed permeability, influenced by the lignin content, porosity, and color, play a pivotal role in seed germination, storage potential, and resistance to field stresses. These issues reverberate through the soybean agricultural supply chain. Strategic interventions are crucial to address these abnormalities and ensure soybean productivity. Seed germination and vigor are reduced due to seed coat cracking and green seeds, undermining food security and necessitating additional resources for disease management. The occurrence and identification of green seeds and seeds with cracks in the seed coat were also reported by identifying the genes and QTLs (quantitative trait loci) associated with these characteristics. Herbicides, commonly used in weed management, may offer a strategic approach to mitigating seed coat cracking and green seed occurrence. Understanding the complex interactions between the genetics, environmental factors, and management practices influencing seed abnormalities is essential as global climate change intensifies. This review emphasizes the need for integrated strategies, balanced plant nutrition, and cohesive phytosanitary management to mainly alleviate seed coat cracking and greenish occurrences in soybeans and other plant species. Full article
Show Figures

Figure 1

10 pages, 2521 KiB  
Article
Exploring Reactive Oxygen Species Accumulation in Allium fistulosum L. Seeds Exposed to Different Storage Conditions
by Gregorio Padula, Anca Macovei, Adriano Ravasio, Andrea Pagano, Conrado Jr Dueñas, Xianzong Xia, Roman Hołubowicz and Alma Balestrazzi
Seeds 2024, 3(1), 123-132; https://doi.org/10.3390/seeds3010010 - 09 Feb 2024
Viewed by 687
Abstract
The purpose of this work was to investigate the production of reactive oxygen species (ROS) in Allium fistulosum seeds stored under different conditions. Optimized seed storage conditions are essential to maintain seed viability, otherwise accumulation of ROS-induced oxidative damage can lead to seed [...] Read more.
The purpose of this work was to investigate the production of reactive oxygen species (ROS) in Allium fistulosum seeds stored under different conditions. Optimized seed storage conditions are essential to maintain seed viability, otherwise accumulation of ROS-induced oxidative damage can lead to seed aging. The A. fistulosum seed lots used in this study have been selected based on their breeding background and reproduction site. Seed samples were stored up to 22 months under six different conditions of temperature (25, 10, and 7.5 °C) and relative humidity (RH) (25% and 45% RH). A germination test and ROS quantification assay were performed on the samples collected after 12 and 22 months of storage, respectively. Within a time-window of 10 months, the tested seed lots evidenced a decrease in the germination rate associated with increased ROS levels. Correlation analysis also showed that ROS production was influenced by genotype. The reported data showed that ROS accumulation was dependent on the storage condition and genotype. Some of the tested seed lots appeared to be prone to ROS accumulation, independent of storage conditions. On the other hand, specific condition storages (25 °C, 25% RH; 25 °C, 45% RH; 10 °C, 25% RH; 7.5 °C, 25% RH) resulted in a lower impact on seed aging. Full article
Show Figures

Figure 1

19 pages, 1612 KiB  
Review
Chemopreventive Potential of Oils Extracted from Seeds of Three Annona Species
by Prabash Attanayake, Dinesha Rupasinghe, Ashoka Gamage, Terrence Madhujith and Othmane Merah
Seeds 2024, 3(1), 105-122; https://doi.org/10.3390/seeds3010009 - 07 Feb 2024
Viewed by 1012
Abstract
Annona fruit, leaves, seeds, roots, and bark have been conventionally used in many countries for medical treatments as they are considered ideal sources of pharmacologically active compounds, but Annona remains an underutilized fruit in many countries. The fruit of these plants is delicately [...] Read more.
Annona fruit, leaves, seeds, roots, and bark have been conventionally used in many countries for medical treatments as they are considered ideal sources of pharmacologically active compounds, but Annona remains an underutilized fruit in many countries. The fruit of these plants is delicately flavored and is used in industrial products such as ready-to-serve beverages, wine, jellies, jam, and fruit-butter preserve, while the seeds generally go to waste. Annona seed oil contains numerous health-benefiting factors such as vitamins, minerals, bioactive compounds, fatty acids, antioxidants, and phenolic compounds, which are responsible for various biological activities, including antibacterial, antioxidant, and antitumor activities. Cancer is a worldwide major health problem that remains unresolved. Even though the current treatments can manage to reduce tumor growth, there is an urgent need to investigate more efficient but less expensive novel techniques to overcome some of the restrictions in treating tumors. Annona might offer an indispensable choice besides chemotherapy and radiotherapy, especially for terminally ill patients, as the Annona genus contains secondary metabolites in nearly every component of Annona plants. Research has shown that many Annona species contain promising components that could potentially exhibit anticancer activity, but the information available is scarce and inconsistent. Annona muricata (Soursop, “Katuanoda”), Annona squamosa (Sweetsop, “Seenianoda”), and Annona reticulata (Custard apple, “Welianoda”) are three commonly cultivated edible Annona species in Sri Lanka. The main objective of the review was to present an updated comprehensive literature analysis of the putative chemopreventive functions against cancer cell lines/the anticancer effect on cancers, phytochemical properties, and antioxidant properties possessed by the seed oils of three selected common Annona species. Although there are some in vitro and in vivo experimental investigations supporting the benefits of Annona seed oils, clinical investigations are still needed to explore concealed areas, determine the effects on the human body, determine the safest concentration, and determine health-contributing benefits before they are submitted to clinical trials. Full article
Show Figures

Figure 1

2 pages, 168 KiB  
Editorial
Seeds: What Happened in 2023?
by José Antonio Hernández, Pedro Díaz-Vivancos and Gregorio Barba-Espín
Seeds 2024, 3(1), 103-104; https://doi.org/10.3390/seeds3010008 - 29 Jan 2024
Viewed by 393
Abstract
As Editor-in-Chief of Seeds, I would like to thank the Authors, Reviewers, Editorial Board Members, Academic Editors, Assistant Editors and all the Staff involved in Seeds for their effort and dedication, which has helped to establish Seeds as a scientific journal in [...] Read more.
As Editor-in-Chief of Seeds, I would like to thank the Authors, Reviewers, Editorial Board Members, Academic Editors, Assistant Editors and all the Staff involved in Seeds for their effort and dedication, which has helped to establish Seeds as a scientific journal in the field of Seed Biology and Technology [...] Full article
15 pages, 286 KiB  
Article
Influence of Hydro, Mechanical, and Chemical Treatments to Seed for Germination and Seedling Growth of Saraca asoca (Roxb. De Wilde)
by Abha Manohar Kandileri, Gopal Shukla, Libin T. Louis, Anil Raj Kizha, Azamal Husen and Sumit Chakravarty
Seeds 2024, 3(1), 88-102; https://doi.org/10.3390/seeds3010007 - 10 Jan 2024
Viewed by 647
Abstract
It has been noticed that Saraca asoca (Roxb. de Wilde) populations are drastically declining in the wild. Conserving such populations is crucial because of the numerous ecological, cultural, and economic values. The purpose of our study was to determine if germination and seedling [...] Read more.
It has been noticed that Saraca asoca (Roxb. de Wilde) populations are drastically declining in the wild. Conserving such populations is crucial because of the numerous ecological, cultural, and economic values. The purpose of our study was to determine if germination and seedling growth could be improved for globally vulnerable Ashoka populations. The study analyzed the effect of various hydro, mechanical, and chemical pre-sowing treatments on the germination and one-year growth of Ashoka seedlings. Our results demonstrated that mechanical (exposing the seed cotyledons) and soaking of seeds in hot water treatments (60 °C) were better than all other water- and chemical-based pre-sowing treatments used in the study of enhancing germination. Nevertheless, chemical treatments were better for the growth and survival of the seedlings. This methodology offers to restore the scattered populations of Ashoka that are facing the risk of extinction in the wild while successfully meeting the commercial demand for this medicinal tree. Full article
12 pages, 5060 KiB  
Article
Sesame Germination Dynamics: Unravelling Sesame’s Response to Salinity and Temperature Variability
by Majid Gholamhoseini and Aria Dolatabadian
Seeds 2024, 3(1), 76-87; https://doi.org/10.3390/seeds3010006 - 10 Jan 2024
Viewed by 655
Abstract
Sesame (Sesamum indicum), a highly valued oilseed, faces challenges in cultivation, especially in regions susceptible to environmental stressors. This study investigates the interactive effects of salinity and temperature on sesame seed germination. Two cultivars, Darab 1 and Oltan, were subjected to [...] Read more.
Sesame (Sesamum indicum), a highly valued oilseed, faces challenges in cultivation, especially in regions susceptible to environmental stressors. This study investigates the interactive effects of salinity and temperature on sesame seed germination. Two cultivars, Darab 1 and Oltan, were subjected to various salinity levels (−3 to −12 bars) and temperatures (15 °C, 20 °C, and 25 °C). Results revealed that at 15 °C, salinity levels beyond -3 bars significantly reduced germination, while at 25 °C, 40% and 62% germination rates were recorded even at −12 bars for Darab 1 and Oltan, respectively. This study highlights the importance of temperature in mitigating the inhibitory effects of salinity on germination. Germination speed exhibited a decline with increasing salinity, particularly at lower temperatures. Shoot and root lengths and dry weights decreased with rising salinity, but Oltan demonstrated greater tolerance than Darab 1. The research emphasises the species-specific nature of temperature-salinity interactions and the intraspecific variability among sesame cultivars. Notably, Oltan, adapted to arid regions with elevated temperatures, displayed increased tolerance to salinity stress. These findings contribute to understanding sesame’s resilience to environmental stressors, aiding in developing resilient cultivars for challenging agricultural landscapes. Overall, temperature is pivotal in influencing sesame seed germination and early seedling growth under salinity stress, offering insights for optimised cultivation practices. Full article
Show Figures

Figure 1

20 pages, 2223 KiB  
Review
The Effects of Storage Conditions on Seed Deterioration and Ageing: How to Improve Seed Longevity
by Françoise Corbineau
Seeds 2024, 3(1), 56-75; https://doi.org/10.3390/seeds3010005 - 09 Jan 2024
Viewed by 1967
Abstract
Seeds are classified as either: orthodox, seeds that tolerate dehydration; recalcitrant, seeds that are high in moisture content and cannot withstand intensive desiccation; or intermediate, seeds that survive dehydration but die during dry storage at low temperatures. Seed lifespan depends on the seed [...] Read more.
Seeds are classified as either: orthodox, seeds that tolerate dehydration; recalcitrant, seeds that are high in moisture content and cannot withstand intensive desiccation; or intermediate, seeds that survive dehydration but die during dry storage at low temperatures. Seed lifespan depends on the seed category and also varies from one species to another. The rate of loss of vigor and viability of orthodox seeds depends mainly on temperature and seed moisture content (MC); the lower the MC and storage temperature, the longer the longevity. Ultimately, storage in liquid nitrogen or seed ultra-drying by well-adapted processes should allow for long-term storage. The ageing of orthodox seeds is associated with numerous forms of cellular and metabolic damage (membrane integrity, energy metabolism, and the impairment of DNA, RNA, and proteins) in which reactive oxygen species play a prominent role. Interestingly, priming treatment can reinvigorate aged seeds by restoring the antioxidant systems. The storage of recalcitrant seeds is very difficult since they must be placed in a wet medium to avoid dehydration and at temperatures low enough to prevent germination but warm enough to avoid chilling injury. A better understanding of the mechanisms involved in ageing is necessary to identify markers in order to estimate seed longevity. Full article
Show Figures

Figure 1

16 pages, 3569 KiB  
Article
Geometric Analysis of Seed Shape Diversity in the Cucurbitaceae
by José Javier Martín-Gómez, Diego Gutiérrez del Pozo, José Luis Rodríguez-Lorenzo, Ángel Tocino and Emilio Cervantes
Seeds 2024, 3(1), 40-55; https://doi.org/10.3390/seeds3010004 - 31 Dec 2023
Cited by 1 | Viewed by 716
Abstract
The Cucurbitaceae is a monophyletic family with close to 1000 species of climbers, including important agronomic species and varieties characterized by tendrils and pepo fruits. The seed’s morphology is varied, and the development and structure of the seed coat have been described in [...] Read more.
The Cucurbitaceae is a monophyletic family with close to 1000 species of climbers, including important agronomic species and varieties characterized by tendrils and pepo fruits. The seed’s morphology is varied, and the development and structure of the seed coat have been described in detail on some species. Overall description of the seed shape is based on terms comparing it with geometric figures, but quantitative methods are lacking in the literature. Here we apply a general morphological analysis to seeds of representative genera of the Cucurbitaceae, followed by curvature analysis in the poles and symmetry analysis. These methods are useful for the quantitative description of seed shape and the comparison between species and varieties. Differences between species were found for most morphological measurements, as well as for symmetry and curvature values. The comparison between three species of Cucumis (Cucumis sativus, C. myriocarpus and C. melo) and two varieties of C. melo reveals differences between species and varieties both in curvature and symmetry. The results obtained from both methods, curvature and symmetry analysis, form similar groupings in a cluster analysis. The methods described here were applied for the identification of agronomic varieties and the quantitative description of seed shape in taxonomy. Full article
(This article belongs to the Special Issue Application of Imaging and Artificial Intelligence in Seed Research)
Show Figures

Figure 1

14 pages, 2174 KiB  
Article
Physical Conditions That Limit Chickpea Root Growth and Emergence in Heavy-Textured Soil
by Wendy H. Vance, Richard W. Bell and Chris Johansen
Seeds 2024, 3(1), 26-39; https://doi.org/10.3390/seeds3010003 - 30 Dec 2023
Viewed by 505
Abstract
The tillage method determines several soil physical parameters that affect the emergence of post-rice chickpea (Cicer arietinum L.) in the Indo-Gangetic Plain of South Asia. Mechanised row-sowing with minimum soil disturbance and crop residue retention in medium-to-heavy-textured soils will alter the seedbed [...] Read more.
The tillage method determines several soil physical parameters that affect the emergence of post-rice chickpea (Cicer arietinum L.) in the Indo-Gangetic Plain of South Asia. Mechanised row-sowing with minimum soil disturbance and crop residue retention in medium-to-heavy-textured soils will alter the seedbed when compared to that prepared after traditional full tillage and broadcast sowing. Whilst minimum soil disturbance and timely sowing may alleviate the soil water constraint to crop establishment, other soil physical properties such as soil strength, bulk density, and aggregate size may still inhibit seedling emergence and root elongation. This study’s objective was to determine the limitations to chickpea crop establishment with increasing bulk density and soil strength, and different aggregate sizes below and above the seed. In two growth cabinet studies, chickpea seed was sown in clay soil with (i) a bulk density range of 1.3–1.9 Mg m−3 (Experiment 1) and (ii) the combination of bulk densities (1.3 and 1.8 Mg m−3) and aggregate sizes (<2 mm and >4 mm) above and below the seed (Experiment 2). Root length was significantly reduced with increasing bulk density (>1.4 Mg m−3), and soil strength impeded early root growth at >1 MPa. Where main root growth was impeded due to high bulk density and soil strength, a greater proportion of total root growth was associated with the elongation of lateral roots. The present study suggests that the soil above the seed needs to be loosely compacted (<1.3 Mg m−3) for seedling emergence to occur. Further research is needed to determine the size of the soil aggregates, which optimise germination and emergence. We conclude that soil strength values typical of field conditions in the Indo-Gangetic Plain at sowing will impede the root growth of chickpea seedlings. This effect can be minimised by changing tillage operations to produce seedbed conditions that are within the limiting thresholds of bulk density and soil strength. Full article
Show Figures

Figure 1

10 pages, 1070 KiB  
Article
Quality and Nutraceutical Features of Cicer arietinum L. Stored under Nitrogen Atmosphere
by Lorenzo Moncini, Gea Guerriero, Gabriele Simone, Chiara Vita and Roberto Berni
Seeds 2024, 3(1), 16-25; https://doi.org/10.3390/seeds3010002 - 21 Dec 2023
Viewed by 639
Abstract
Cicer arietinum L. (chickpea, or garbanzo bean) is one of the most consumed legumes worldwide. It is a rich source of carbohydrates, proteins, fibers, minerals and vitamins with very low cholesterol. From a nutritional point of view, despite the low content of fats, [...] Read more.
Cicer arietinum L. (chickpea, or garbanzo bean) is one of the most consumed legumes worldwide. It is a rich source of carbohydrates, proteins, fibers, minerals and vitamins with very low cholesterol. From a nutritional point of view, despite the low content of fats, the seeds contain various unsaturated acids, such as linoleic and oleic acids, as well as bioactive compounds, like antioxidants, with reactive oxygen species-scavenging activities. It is known that long periods of storage can drastically affect the preservation of these compounds in seeds. For this reason, in the last few years, different methods have been tested with the aim of increasing the shelf life of economically relevant beans, seeds and cereals. A promising and eco-friendly alternative to traditional storage is the use of a controlled atmosphere, represented by N2-pressurized silos. The present study aims at evaluating the content of different compounds, e.g., fatty acids, proteins, vitamins, and molecules of nutraceutical interest, in chickpeas stored at ambient temperature in N2-pressurized silos (98.5 ± 0.5% (v/v)) and control ones (standard storage) in long-term kinetics (1 year). The results show the stable content of most compounds during the kinetics. However, vitamin E decreased in samples stored under both standard and controlled atmosphere conditions, with a more pronounced and significant decrease under standard conditions as compared to the controlled atmosphere. Additionally, samples stored under a controlled atmosphere show a total higher content of quinic, indole butyric and benzoic acid, as well as their derivates. Full article
Show Figures

Figure 1

15 pages, 2540 KiB  
Article
Altitudinal Genetic Variation of Pinus oocarpa Seedling Emergence in the Southern Mountains, Oaxaca, Mexico
by Mario Valerio Velasco-García and Adán Hernández-Hernández
Seeds 2024, 3(1), 1-15; https://doi.org/10.3390/seeds3010001 - 20 Dec 2023
Viewed by 636
Abstract
Pinus oocarpa is the most important conifer for resin production in Mexico, so superior resin trees were selected in the Southern Mountains of Oaxaca, Mexico. The objective was to determine the variation and differences among provenances and among trees according to the parameters [...] Read more.
Pinus oocarpa is the most important conifer for resin production in Mexico, so superior resin trees were selected in the Southern Mountains of Oaxaca, Mexico. The objective was to determine the variation and differences among provenances and among trees according to the parameters of seedling emergence and the number of cotyledons, and their relationship with elevation and climatic variables. The seedling emergence of four replicates of 20 seeds from 80 trees was counted daily. For the emergence parameters, provenance contributed 42.02% to the total variance, tree 29.19% and error 28.79%. Only tree (11.71%) and error (88.29%) contributed to the total variance of the cotyledon number. The effect of provenance (p ≤ 0.0006) and tree (p ≤ 0.0001) was significant for all variables evaluated. Higher-elevation provenances and trees had higher emergence values. The emergence parameters were positively associated with tree elevation. Climatic variables related to precipitation and temperature were negatively related to the emergence parameters. The results allow for the selection of phenotypes without emergence problems to establish seed orchards. Full article
(This article belongs to the Special Issue Parameters of Seed Germination in Wild Plant Species)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop