Next Issue
Volume 2, March
Previous Issue
Volume 1, September
 
 

Microplastics, Volume 1, Issue 4 (December 2022) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 3036 KiB  
Article
Macroplastics and Microplastics in Intertidal Sediment of Vinces and Los Tintos Rivers, Guayas Province, Ecuador
by Rebecca Talbot, Maritza Cárdenas-Calle, James M Mair, Franklin López, Guillermo Cárdenas, Beatríz Pernía, Mark G. J. Hartl and Miguel Uyaguari
Microplastics 2022, 1(4), 651-668; https://doi.org/10.3390/microplastics1040045 - 07 Dec 2022
Cited by 5 | Viewed by 2142
Abstract
The composition, abundance and distribution of macroplastics (MAPs) and microplastics (MPs) in the Vinces and Los Tintos rivers were determined in three sites (Pueblo Nuevo, Santa Marianita, Los Tintos) from the low basin in the coastal province of Guayas, Ecuador. MAPS were recorded [...] Read more.
The composition, abundance and distribution of macroplastics (MAPs) and microplastics (MPs) in the Vinces and Los Tintos rivers were determined in three sites (Pueblo Nuevo, Santa Marianita, Los Tintos) from the low basin in the coastal province of Guayas, Ecuador. MAPS were recorded by visual census, covering a total distance of 140 m, and MPs were extracted in the intertidal sediments via density separation using a saturated NaCl solution, and these were counted using a stereomicroscope. A total of 940 plastic items were identified. The predominant debris was plastic with 85.2%, followed by manufactured materials and metals. The Vinces River contained the highest abundance of plastic in the locality of Pueblo Nuevo. The most abundant plastic was MPs. The most common MAPs were plastic bags (23%), food packaging (17%) and foamed plastic (8%). MP size classes quantified between 0.15 and 2.52 mm in intertidal, very fine sandy sediment and decreased in abundance with increasing grain size. The most common MPs were fibres (65.2%) (black (43.8%) and blue (25.8%)), and their distribution has a high correlation with population density and water flow direction: Santa Marianita 5.55 g−1, Pueblo Nuevo 7.39 g−1, Los Tintos 8.17−1. A significant abundance of fibres was identified in Pueblo Nuevo. The plastic spatial distribution revealed major plastic pollution in areas where recreational and tourism activities have been developed. Therefore, we recommend implementing awareness campaigns by educating businesses, residents and tourists on managing solid waste (especially plastic) and wastewater. Our results can serve as a baseline for future plastic monitoring in the area. Full article
(This article belongs to the Special Issue Microplastics in Marine Environment)
Show Figures

Figure 1

11 pages, 3439 KiB  
Article
State of the Art Offshore In Situ Monitoring of Microplastic
by Daniele Calore and Nicola Fraticelli
Microplastics 2022, 1(4), 640-650; https://doi.org/10.3390/microplastics1040044 - 02 Nov 2022
Cited by 4 | Viewed by 1763
Abstract
Microplastics make up a significant amount of the overall quantity of plastic debris that is present in seawater. However, their detection and monitoring at sea is cost-inefficient and challenging; typically, it consists of water sampling with special manta nets, followed by long (i.e., [...] Read more.
Microplastics make up a significant amount of the overall quantity of plastic debris that is present in seawater. However, their detection and monitoring at sea is cost-inefficient and challenging; typically, it consists of water sampling with special manta nets, followed by long (i.e., weeks) laboratory analysis to obtain valid results. The analysis of the state-of-the-art technologies capable of monitoring/detecting microplastics in the sea (typically in coastal areas) presented in this paper shows that there are currently no specific tools to obtain quick measurements. The classic multiparametric probes are useless and the contribution of their relative chemical–physical parameters to determine the presence of microplastics in water is insignificant. The evolution in the last decade of hardware and software tools for capturing hologram images and related post-processing seems to be one of the most effective methods available currently for the rapid detection of microplastics in seawater. In particular, some results of monitoring campaigns carried out in the Adriatic Sea using this type of technology are reported. The acquired data are analyzed and discussed, highlighting their strengths and weaknesses, with indications of the possible methodologies that could be used to improve these systems. Full article
(This article belongs to the Special Issue Microplastics in Marine Environment)
Show Figures

Graphical abstract

14 pages, 1008 KiB  
Review
Microfibers: Environmental Problems and Textile Solutions
by Judith S. Weis and Francesca De Falco
Microplastics 2022, 1(4), 626-639; https://doi.org/10.3390/microplastics1040043 - 01 Nov 2022
Cited by 6 | Viewed by 7130
Abstract
Microplastics have become a topic of considerable concern and intensive study over the past decade. They have been found everywhere in the oceans, including the deepest trenches and remotest parts of the Arctic. They are ingested by many animals and some are incorporated [...] Read more.
Microplastics have become a topic of considerable concern and intensive study over the past decade. They have been found everywhere in the oceans, including the deepest trenches and remotest parts of the Arctic. They are ingested by many animals and some are incorporated into tissues. There is considerable effort in studying what effects they have on marine life. It has become clear that when water samples are collected in ways that prevent most long thin particles from escaping through pores of a net, the most abundant type of microplastics found in water and sediments are microfibers (fibers with dimensions less than 5 mm). The major source of these pollutants is synthetic textiles, such as polyester or polyamides, which shed microfibers during their entire life cycle. Microfibers are released during textile manufacturing, everyday activities (e.g., washing, drying, wearing) and final disposal. The complexity of microfiber release mechanisms and of the factors involved make the identification and application of ways to reduce the inputs of microfibers very challenging. A comprehensive approach is strongly needed, taking into account solutions at a number of levels, such as re-engineering textiles to minimize shedding, applying washing machine filters, developing advanced wastewater treatment plants and improving the management of textile wastes. To harmonize and make mandatory the solutions identified, a variety of potential government policies and regulations is also needed. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Graphical abstract

16 pages, 2481 KiB  
Review
Opening Space for Plastics—Why Spatial, Soil and Land Use Data Are Important to Understand Global Soil (Micro)Plastic Pollution
by Collin J. Weber and Moritz Bigalke
Microplastics 2022, 1(4), 610-625; https://doi.org/10.3390/microplastics1040042 - 08 Oct 2022
Cited by 6 | Viewed by 3205
Abstract
After five years of research on microplastic pollution of soils it becomes obvious that soil systems act as a reservoir for microplastics on global scales. Nevertheless, the exact role of soils within global microplastic cycles, plastic fluxes within soils and environmental consequences are [...] Read more.
After five years of research on microplastic pollution of soils it becomes obvious that soil systems act as a reservoir for microplastics on global scales. Nevertheless, the exact role of soils within global microplastic cycles, plastic fluxes within soils and environmental consequences are so far only partly understood. Against the background of a global environmental plastic pollution, the spatial reference, spatial levels, sampling approaches and documentation practices of soil context data becomes important. Within this review, we therefore evaluate the availability of spatial MP soil data on a global scale through the application of a questionnaire applied to 35 case studies on microplastics in soils published since 2016. We found that the global database on microplastics in soils is mainly limited to agricultural used topsoils in Central Europe and China. Data on major global areas and soil regions are missing, leading to a limited understanding of soils plastic pollution. Furthermore, we found that open data handling, geospatial data and documentation of basic soil information are underrepresented, which hinders further understanding of global plastic fluxes in soils. Out of this context, we give recommendations for spatial reference and soil context data collection, access and combination with soil microplastic data, to work towards a global and free soil microplastic data hub. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Graphical abstract

23 pages, 9287 KiB  
Article
Effects of Silica Fume and Micro Silica on the Properties of Mortars Containing Waste PVC Plastic Fibers
by Rawa Ahmed Mahmood and Niyazi Ugur Kockal
Microplastics 2022, 1(4), 587-609; https://doi.org/10.3390/microplastics1040041 - 07 Oct 2022
Cited by 3 | Viewed by 3379
Abstract
Investigations on the usability of waste plastics as a new generation of construction materials have become one of the main concerns of researchers and engineers in recent decades. Waste plastics can be used either as aggregate replacement or as fiber reinforcement to enhance [...] Read more.
Investigations on the usability of waste plastics as a new generation of construction materials have become one of the main concerns of researchers and engineers in recent decades. Waste plastics can be used either as aggregate replacement or as fiber reinforcement to enhance the properties of cementitious mixtures. This study focuses on the properties of waste PVC fiber-reinforced mortars containing silica fume and micro silica. Plastic fibers were added to the mortar mixes by volume fractions of 0%, 1%, 2%, and 3%. Cement was replaced by micro silica and silica fume by 5%, 10%, and 15% by weight of cement, respectively. In total, 28 different groups of mortars were produced. The results showed an enhanced ductility and deformation behavior of mortars upon the addition of waste PVC plastic fibers. It can be seen that fibers restricted crack propagation and maintained integrity, hence improving the ductility of the mortars. On the other hand, the addition of fibers led to a reduction in the physical and mechanical properties of the mortar samples. The compressive strength of the mortar samples decreased gradually by increasing the fiber content. Cement replacement by silica fume improved mechanical and microstructural properties of the mortars. The results also demonstrated that silica fume significantly decreased the porosity and water absorption capacity of mortar samples. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Graphical abstract

15 pages, 5561 KiB  
Article
Detection and Analysis of Microfibers and Microplastics in Wastewater from a Textile Company
by Sinem Hazal Akyildiz, Rossana Bellopede, Hande Sezgin, Ipek Yalcin-Enis, Bahattin Yalcin and Silvia Fiore
Microplastics 2022, 1(4), 572-586; https://doi.org/10.3390/microplastics1040040 - 03 Oct 2022
Cited by 9 | Viewed by 2703
Abstract
Textile wastewater is polluted by inorganic/organic substances, polymers, dyes, and microfibers (MFs), which are microplastics (MPs) and natural fibers. This work is aimed at the preliminary investigation of MFs and MPs in textile industrial wastewater, and at evaluating the removal efficiency of an [...] Read more.
Textile wastewater is polluted by inorganic/organic substances, polymers, dyes, and microfibers (MFs), which are microplastics (MPs) and natural fibers. This work is aimed at the preliminary investigation of MFs and MPs in textile industrial wastewater, and at evaluating the removal efficiency of an on-site wastewater treatment plant (WWTP). Ten samples of inflows and outflows of the WWTP of a textile company (applying a physic-chemical process) have been analyzed. Firstly, the samples underwent a pretreatment with 15% hydrogen peroxide at 25 °C for 5 days to remove organic compounds. Secondly, the MFs were recovered from the aqueous phase by pre-screening centrifugation, density separation, and filtration as alternative options. Filtration obtained the best performances, compared to the other recovery processes. Thirdly, the MFs were counted through optical microscopy and the MPs were identified through micro-FTIR. The MFs amount in the inflow samples was in the range of 893–4452 MFs/L. The outflow samples (310–2404 MFs/L) exhibited a 38–65% reduction compared to the inflows, demonstrating that up to 62% of residual MFs can enter the sewer network or the receiving water body. Cotton and wool, and numerous MPs (acrylic, polyester, polypropylene, polyamide, and viscose/rayon) were identified in the inflow and outflow samples (with the only exception of “dense” viscose (rayon), not detected in the outflows, and probably retained by the WWTP with the sludge). This study, even if just preliminary, offers interesting hints for future research on MFs/MPs detection in textile wastewater, and on the performance of a full-scale WWT process for their removal. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop