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Abstract: The composition, abundance and distribution of macroplastics (MAPs) and microplas-
tics (MPs) in the Vinces and Los Tintos rivers were determined in three sites (Pueblo Nuevo, Santa
Marianita, Los Tintos) from the low basin in the coastal province of Guayas, Ecuador. MAPS were
recorded by visual census, covering a total distance of 140 m, and MPs were extracted in the intertidal
sediments via density separation using a saturated NaCl solution, and these were counted using a
stereomicroscope. A total of 940 plastic items were identified. The predominant debris was plastic
with 85.2%, followed by manufactured materials and metals. The Vinces River contained the highest
abundance of plastic in the locality of Pueblo Nuevo. The most abundant plastic was MPs. The most
common MAPs were plastic bags (23%), food packaging (17%) and foamed plastic (8%). MP size
classes quantified between 0.15 and 2.52 mm in intertidal, very fine sandy sediment and decreased
in abundance with increasing grain size. The most common MPs were fibres (65.2%) (black (43.8%)
and blue (25.8%)), and their distribution has a high correlation with population density and water
flow direction: Santa Marianita 5.55 g−1, Pueblo Nuevo 7.39 g−1, Los Tintos 8.17−1. A significant
abundance of fibres was identified in Pueblo Nuevo. The plastic spatial distribution revealed major
plastic pollution in areas where recreational and tourism activities have been developed. Therefore,
we recommend implementing awareness campaigns by educating businesses, residents and tourists
on managing solid waste (especially plastic) and wastewater. Our results can serve as a baseline for
future plastic monitoring in the area.
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1. Introduction

Estuaries and rivers are amongst the most economically and biologically important
ecosystems [1]. However, their productivity and functionality are being affected by the
fragmentation of plastic waste, which is effectively transporting and releasing vast amounts
of fibres and particles into the oceans and being consumed by aquatic organisms [2]. The
degradation of larger plastic items by breaking up into secondary microplastics (MP), is
one of the main sources of MP pollution. Primary MPs are intentionally manufactured,
such as microbead and pre-production pellets, and can be found in sediments [3,4]. MP
morphotypes consist of fibres, particles, beads, pellets, films and Styrofoam [5].

Plastics can be categorised into three forms: macroplastics (MAPs; large plastic >2.5 cm),
MPs (fibres/particles <5 mm) and nanoplastics (NPs; <1 µm) [3,6]. It has been estimated
that up to 51 trillion particles may be floating on the surface of the oceans worldwide [7].
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One study reported that an estimated 4.8–12.7 million metric tons of MPs were discharged
into the oceans during 2010 [8]. Most MPs are caused by physical, photo and microbiological
degradation of MAPs [9] which enter the aquatic systems, especially in urban areas where
a high abundance of MP pollution is found [10]. MPs settle upon reaching variable density
in the water column, allowing them to remain adrift and travel long distances through
ocean currents [11].

Since the early 1970s the North Atlantic, North Pacific and South Pacific Subtropical
Gyres have witnessed accumulations of floating plastic debris [12]. Generally, environmen-
tal plastic debris originates from three primary domains, land, river, and ocean [13,14], and
is transported within estuaries by the influence of water movement and wind patterns [15].
Upon dispersion and fragmentation, caused by weathering processes and photodegrada-
tion, plastics converge in gyres, bays, gulfs and estuaries worldwide [13]. Plastic debris
enters these riverine environments, mainly from land-based sources, during the rising tide,
travelling out into coastal waters when the tide falls [15] and subsequently transferring
across the shores of Ecuador by boundary currents [16], causing serious problems for
marine life [15].

A recent analysis based on publications from January 2014 to May 2021 in Asian
freshwater ecosystems, considered as a “hot spot” for plastic production, showed the
presence of MPs in water, sediments and biota [10]. Plastic pollution production mainly
originated from domestic wastewater/runoff, followed by industrial emissions, fisheries
and aquaculture. In water, MPs ranged between 0.004 items m−3 and 500,000 items m−3

in a highly populated watershed, and in sediments the MP abundance ranged from 1
to more than 30,000 items kg−1 dry weight. Polyethylene (PE) and polypropylene (PP)
were predominantly recorded in water and sediments. The abundance of MP in the
species studied depended on the location, MP transference and accumulation in the aquatic
environment, and ingestion by low to high trophic level organisms [10]. The presence of
plastic in fish guts is normally high in rivers and estuaries [17] and affects animals through
the ingestion of marine fish [18], causing damage to the respiratory and gastrointestinal
tracts by obstruction [19].

Studies suggest that rivers contribute significantly to ocean litter pollution. Research
shows that food and beverages packaging contributed to more than a quarter of total litter
pollution in the Adour River, France [20]. With plastic packaging fragmenting over time, it
inevitably breaks up into MPs. The timescale of particle fragmentation is uncertain, yet
depending on the polymer type, it is suggested that in cold, oxygen-limiting conditions
it could take more than 300 years for a 1 mm piece of plastic to fragment into 100 nm
size pieces [8]. High concentrations of MPs are recorded in urban areas which serve as
fishing grounds or industrial outflows, and are transported by estuarine waters. One study
investigated five estuaries in KwaZulu-Natal, South Africa and reported them as pathways
from catchments to the oceans [21]. A study investigating the occurrence of MPs in surface
water from Yangtze, Jiaojiang, Oujiang, and Minjiang estuaries also reported that the high
risk of inland water pollution by MPs is due to population density and unsound waste
management systems [22].
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Very little research on smaller fragments of plastic in freshwater environments is
available, and attention should be focused on the source of these plastics within river basins,
particularly in South America due to their volume and global ecological significance [23].
Recent studies in the southeast Pacific Ocean found a low prevalence of MP ingestion
by planktivorous fish species along the coasts of Panamá to southern Chile. However,
Ecuador showed high MP ingestion by fish in coastal waters close to urban areas such as
La Libertad, with 3840 inhabitants km2 [24]. Some studies in the Galapagos and beaches on
the Ecuadorian coast reveal that plastic items originating from fishing nets [25] and debris
pollution [26,27] are some of the most prevalent problems in Ecuador.

In 2010, the National Program of Integrated Solid Waste Management (PNGIDS)
was developed, aiming at promoting integrated and sustainable solid waste management
throughout the 221 municipalities in Ecuador [28]. This program was enforced by the Min-
istry of the Environment (MAE) and is regulated through the Constitution of Ecuador [29]
and the Organic Code of the Environment [30]. Despite these efforts, only 24% of the
country’s municipal governments are separating waste, thus giving a clear indicator of
economic unsustainability [31]. However, there is limited information on the composition
and distribution of macro and microplastics in rivers, especially in the lower basins and
estuarine areas of the coast of Ecuador. Therefore, this research was focused on determining
the composition, abundance and distribution of MAPs and microplastics in a section of the
Vinces and Los Tintos rivers in the Guayas province, to generate a baseline of contamination
in fresh water sources in Ecuador.

2. Materials and Methods
2.1. Study Area

The Guayas province is located on the central-western coast of Ecuador with a popula-
tion of 3,573,003 inhabitants and an area of 18,661.69 km2 [32]. Its hydrographic network is
formed by the Guayas Basin, which extends across 36,000 km2 [33]. Various rivers merge
to form the Guayas River, the most important river in this province. The Guayas estuarine
system is highly productive due to upwelling caused by the Humboldt current [34] and is
one of the largest estuarine basins in Ecuador, covering an area of 33,700 km2 [35]. Towards
the north of Guayaquil city, the Daule (receiving waters from Pueblo Viejo, Vinces, Zapatal,
and Yaguachi) and Babahoyo (with San Pablo and Caracol affluents) rivers merge to form
the Guayas River [36], which ultimately flows into the Pacific Ocean [37]. An important
tributary within this hydrographic network is the Vinces river; it contributes to the supply
and irrigation of crops and is the first freshwater beach resort in Ecuador [38].

The Los Tintos and Vinces rivers flow in a south-eastern direction feeding into the
Babahoyo River (Figure 1). The sub-basins descend from the Andes and drain depending
on the amount of rainfall. At peak flow, the average annual discharge during the dry
season (June and November) is 200 cubic metres per second (m3 s−1) and may increase to
approximately 1600 m3 s−1 during the wet season (December and May) [39]. The hydro-
geographic conditions of the watersheds form the Guayas ecosystem. The most important
watersheds in Ecuador [40] contain a wide variety of productive activities which are being
developed. The main anthropogenic activities that have impacted the Guayas Basin are
urban-industrial development, monoculture agriculture and shrimp pond aquaculture [41].
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Figure 1. Sample points in Vinces and Los Tintos Rivers.

2.2. Sample Collection

Sample collection was carried out in June 2018 in the dry season at three sites within
the Guayas province: Santa Marianita (1◦49′16′ ′S, 79◦48′14′ ′ W), Pueblo Nuevo (1◦49′31′ ′ S,
79◦48′9′ ′ W) and Los Tintos (1◦52′29′ ′ S, 79◦51′42′ ′ W). The geographic locations of the
sampling sites are given in Table 1 and Figure 1. MP in sediments were collected using
survey techniques from [3], and MAPs using the standing stock survey protocol developed
by NOAA [42]. A 40–50 m transect line along the strandline was used for both surveys.
A total of nine stations were surveyed, three stations per site. In addition, granulometry
analysis was carried out to apply the MP density separation technique widely used in
coastal areas of the United Kingdom [3]. The maps were produced using ArcGIS (ArcMap
version 10.6), from an Ecuador landmass shapefile, and GPS coordinates were added to
indicate the sites and stations sampled.

Concentration (C) =
total number o f recorded items (n)

(transect width (w) · total transect length (l))
(1)
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Table 1. Main characteristics of sampling sites.

Pueblo Nuevo Santa Marianita Los Tintos
Latitude 1◦49′31′ ′ S 1◦49′16′ ′ S 1◦52′29′ ′ S

Longitude 79◦48′9′ ′ W 79◦48′14′ ′ W 79◦51′42′ ′ W
Aspect North-East North South-East

Location Suburban town Rural/suburban
village Suburban town

Major usage Recreation and
agriculture Boats

Recreation,
agriculture and

fishing
River name Vinces river Vinces river Los Tintos river

Water flow direction East South-East South-West

Landward limit Street (tyres used as
barriers along shore) Boat ramp Vegetation

Description

Residential area,
vehicle and boat
activity, used for

fishing and
agriculture

Few residences
surrounding

riverside, small
harbour area, canoe

and boat access

Very residential,
regular boat traffic,
heavy fishing and
agricultural use

Nearest landmarks Beach and restaurants Slaughterhouse
Bridge, shops,

restaurants,
residences

2.3. Contamination Prevention Measures

To prevent risk of contamination in the field, specific measures were taken, such
as avoidance of clothing containing synthetic fibres. A dampened Microfibre filter MF
300 (Fisherbrand, 70 mm) was used to act as the control and collect any atmospheric
fibres/particles during sampling, and sampling was conducted into the wind to mitigate
operator contamination further.

2.4. Macroplastic Standing Stock Survey

To provide source analysis of the area, the same transect line was used at each site. The
standing-stock protocol was adopted from NOAA [42] to ensure that the technique was a
reputable assessment of the distribution and types of litter identified [43]. Four random
transects were chosen at each site, which were selected in 5 m segments, and data, including
litter types and substrate, were recorded. Each site was closely surveyed by walking from
the transect line to the back of the shoreline (first barrier) and GPS coordinates were
recorded in the centre. Debris items measuring over 2.5 cm were recorded by visual census.

2.5. Microplastic Sediment Sampling

Firstly, a 40–50 m transect line was laid out along the water’s edge (strandline) at each
site. Three replica samples were collected at all three stations per site: both ends and at
the centre of the transect, recording GPS coordinates at each station. The samples were
collected approximately 1 m from the strandline by pushing a 5 mL glass bijoux jar into the
sediment, which acted as a miniature corer and was then sealed with a metal screw cap
(Figure 2). The most representative accumulations of microplastics were sampled within
the top 3 cm of sediment. This methodology was based on a study also sampling MP in
sediment [3].
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Figure 2. Photographs taken during microplastic sediment sampling; (a) transect line laid over plastic
litter, (b) control placed next to the sampling station, (c) glass vial pushed into the sediment, (d) three
replicate samples, sealed and labelled ready for analysis.

2.6. Laboratory Analysis

Laboratory analysis began by weighing each sample prior to MP extraction. Sediment
weight was determined by decanting each sample into an individual pre-weighed 250 mL
glass beaker, covering with Pyrex glass covers or foil (to prevent contamination) and placing
into a drying oven at 50 ◦C for 24 h, after which the glass was re-weighed, and the difference
taken to calculate the dry weight of the sediment.

2.6.1. Microplastic Extraction

Plastic fibres and particles were extracted using density separation in a saturated
solution of NaCl The sediment was agitated with a Teflon-coated magnetic stirrer for 1 min
in 100 mL of saturated NaCl solution (384 g per litre (g L−1)) and left for 1 min to allow
the sediment to settle. The surface of the sample was then carefully vacuumed, (BOECO
R-300 vacuum pump 110 V) using a glass Pasteur pipette attached to a silicone hose, into a
three-neck-distilling flask. The extracted solution was filtered through a Microfibre filter
MF 300 (Fisherbrand, 47 mm, pore size 0.7 µm) using the vacuum pump, and placed inside
a labelled petri dish to put aside and dry at room temperature for 24 h. Each replicate was
re-washed and filtered three times due to slightly muddy sediment. The filters (n = 81)
were examined under a high-powered Leica MC170 dissecting microscope and fibres and
particles were removed using fine, steel forceps and transferred onto fresh filters. A Leica
MZ8 compound microscope with 90×magnification power was then used to differentiate
between plastic and non-plastic. This fast-screening technique allowed rapid identification
of size, shape and colour of MPs.

Plastic fibres and particles were determined based on no cellular or organic structures
visible, equal thickness (sometimes fraying or splitting), clear and homogeneous colour,
shine, and upon prodding either spring or do not break [44]. The suspected MPs were
counted and sorted into sections on the filter paper in terms of shape and colour. In order
to account for atmospheric contamination in the lab, an open petri-dish with a damp
Microfiber filter MF 300 (Fisherbrand, 70 mm) was used throughout the entire procedure.
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2.6.2. Grain Size Analysis

Following MP extraction, the grain size analysis was performed using seven sieves of
decreasing mesh size (2000 micrometre (µm), 1000 µm, 500 µm, 300 µm, 250 µm, 125 µm
and 63 µm). Each sample was passed through the sieve stack (ELE International Ltd.,
Bedfordshire, UK) using distilled water, and placed into a drying oven at 105 ◦C for
approximately 45 min. The retained sediment in each sieve was then weighed and the
cumulative percentage calculated.

2.7. Plastic Categories

To easily sort and distinguish MPs and macro-plastics, they were categorised as
follows. Two types of MP morphotypes were identified in this study: fibres and particles.
The macro-plastic types were food wrappers, beverage bottles, bottle lids, bags, production
cables, cups/plates (including polystyrene (PS)), utensils, straws, personal care products
and polypropylene (PP) sandbags.

2.8. Statistical Analysis

All data were tested for the basic assumptions for normality and homogeneity of
variance. The Shapiro–Wilk test was performed to analyse the normality of the data
distribution. In order to determine the difference of MAPs and MP abundance at each site a
non-parametric ANOVA was performed, after the assumptions were not fulfilled, using the
Kruskal–Wallis test. Statistical tests were performed using R version 3.3.2 [45]. The Principal
Component Analysis (PCA) was conducted to determine the effect of site characteristics and
human activities on macro items and MP (fibres and particles) distribution, and the previous
square root transformation and data normalisation of abundance of items conducted using
PRIMER V7 [46]. The variables tested were number of macro items, plastic, wood, metal,
glass, rubber, fabric material, fibres, particles and direction of river flow (DRF).

3. Results
3.1. Macro Items

A total of 336 macro items were found, and 286 of those were recorded as MAPs
across all sampling sites. Plastics were the predominant debris in the three study sites with
85.2% (286 items), followed by fabric materials (17 items) with 5.06% and metals with 4.17%
(14 items). Relevant metadata recorded at the sites are shown in Table 2. Pueblo Nuevo had
significantly more plastic (89%) recorded compared to 11% of the other materials (metal,
glass, rubber, processed lumber and cloth) (p < 0.05) (Figure 3).

Table 2. Details of macro items and microplastics (fibres and particles) recorded in sediments of
Vinces and Los Tintos rivers.

River Total
MAPs

Macro
Average

(Items/m2)

No of
Black
Fibres

No of
White
Fibres

No of
Red

Fibres

No of
Blue

Fibres

No of
Green
Fibres

No of
Yellow
Fibres

No of
Particles

Size
Classes
(mm)

MPs
(Item g−1)

Total Items
(MAPS + MPs)

Vinces
River:

Pueblo
Nuevo

213 9.1 76 27 15 29 4 1 54 0.43–2.52 7.39 419

Vinces
River:
Santa

Marianita
98 3.52 59 22 21 28 8 84 0.25–0.35 5.55 320

Los Tintos
River: Los

Tintos
25 1 52 9 21 53 2 89 0.15–0.61 8.17 251
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Figure 3. Abundance and distribution of microplastics and macroplastics in the sediments of study
sites in Guayas Province, Ecuador. Percentage distribution of debris items recorded by sites.

The abundance of the macro items varied between study sites; the largest number was
registered in Pueblo Nuevo with 213 items, Santa Marianita with 98 items and Los Tintos
with 25 items. Wood, metals and fabric material were commonly recorded in the studied
sites. High levels of MAPs have been found in the Vinces River, mainly in Pueblo Nuevo
and especially in the riverine zone used for recreational activities and outdoor restaurants.
Santa Marianita was the second site with a major abundance of MAP, followed by metals
and fabrics. These localities are exposed to a variety of sources, including recreation, fishing,
navigation, a landing area for boats and a slaughterhouse.

The mean total concentration of macroplastics (Macro average) was 9.1 items/m2

in Pueblo Nuevo, 3.52 items/m2 in Santa Marianita and 1 items/m2 in Los Tintos. The
majority of MAPs recorded were 33.2% poly sandbags (n = 95), 23.1% plastic bags (n = 66),
16.7% food packaging (n = 48) and 8% foamed plastic (EPS) (n = 23). The greatest debris
item recorded was polypropylene (PP). There was no significant difference between plastic
and other items at Santa Marianita and Los Tintos. The average concentrations for MAPs
across all sites did not differ significantly.
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3.2. Microplastic Composition in Sediment

MP particles and fibres (<5 mm) were detected in each replicate intertidal sedi-
ment sample. A total of 654 MPs were found at the study sites; 65.2% were fibres and
34.8% MP particles. The down-stream MP contamination was most pronounced at Los
Tintos, with 34.6% (226 items), followed by Santa Marianita with 33.9% (222 items). The
fibres were measurable at high concentration in Pueblo Nuevo and the particles in Los
Tintos (Table 2). The average abundance of large MPs (1–5 mm) in sediments ranged from
1 to 2.522 items/m and the average number of small microplastics (<1 mm) in sediment
samples was 0.154–0.613 items/m, respectively (Table 2; Figure 4). The average MP con-
centrations g−1 sediment across all sampling sites ranged from 5.55 g−1 to 8.17 g−1 and did
not differ significantly. However, a significantly greater concentration of fibres (5.04 g−1)
was identified in Pueblo Nuevo compared to particles (2.35 g−1) (p < 0.05) (Figure 4). The
average MP concentrations/g−1 for all particles and fibres within Los Tintos and Vinces
River had no significant difference.
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3.3. Microplastic Colours

In Los Tintos River, recovered MPs were found in a variety of colours including black,
white, red, blue and green (Figure 5). These colours, including yellow, were found in
Vinces River. This river accounted for 38% of black microfibres, making them the most
abundant colour. Los Tintos river identified an abundance of 35% blue and 34% black fibres
(Figures 5 and 6).
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3.4. Contamination

During sediment sampling, contamination control filters were used to collect any
airborne fibres. No fibres were found upon microscopic analysis. During laboratory
analysis, the same protocol was applied and two red and three blue plastic microfibres
were recorded. These fibres were identical in colour, structure and length and such fibres
were therefore ruled out and eliminated from the sorting process.

3.5. Sediment Weight and Grain Size

Across all sampling sites, microplastics were found to be less abundant as particle
size became greater in density. The sediment type of highest abundance across all three
sampling sites consisted of 61% very fine sand (125 µm) (Table 3). Los Tintos contained the
greatest percentage of very fine sand, whilst larger coarse sand/granules (500 µm to 2 mm)
were the least abundant. Pueblo Nuevo consisted of a significantly greater concentration
of medium (300 µm)/fine (250 µm) sand compared to other sampling sites. The highest
abundance of silt clay content was also found at Pueblo Nuevo.
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Figure 6. Photographic evidence of a few microplastic fragments identified during microscopic anal-
ysis (recording each site and station); (a) yellow plastic fibre: A1 (2.522 mm), (b) green plastic fibre:
A2 (5.434 mm), (c) shiny plastic particle: A3 (0.576 mm), (d) red plastic particle: B2 (0.326 × 0.289 mm),
(e) black plastic fibre: B2 (6.233 mm), (f) unknown crustacean (3.168 × 2.982 mm) with blue
plastic fibre: B3 (0.878 mm), (g) blue plastic fibre: C2 (4.166 mm), (h) red/blue plastic particle:
C3 (0.291 mm), (i) shiny plastic particle: C1 (0.490 mm), (j) blue plastic fibre in contamination control
filters (1.902 mm), (k) dark plastic particle: C1 (0.616 mm), (l) blue non-plastic fibre: C3 (1.055 m).
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Table 3. Grain size analysis of sediment sampled at each site.

phi (Φ) mm Pueblo Nuevo
(%)

Santa Marianita
(%)

Los Tintos
(%)

Granules −1 2 0.25 0.36 0.08

V. coarse sand 0 1 0.57 0.22 0.05

Coarse sand 1 0.5 1.63 0.47 0.35

Medium sand 1.5 0.3 13.02 3.74 1.65

Fine sand 2 0.25 8.49 3.65 2.58

V. fine sand 3 0.125 48.25 65.50 70.27

Silt clay 3.5 0.063 27.80 26.06 25.02

100 100 100

3.6. Anthropogenic Activity

Both rivers are influenced by anthropogenic activity. The greatest number of MPs
and MAPs were recorded in Vinces River (74.62%) with 738 items, 418 items distributed
in Pueblo Nuevo and 320 in Santa Marianita (Figure 7). Pueblo Nuevo has a small, public
beach located 464 metres (m) upstream, and a slaughterhouse is situated 119 m away
from Santa Marianita. Both are potential factors contributing to plastic pollution. At Los
Tintos River there were low numbers of MP and MAPs (25.38%) with 251 items; this site is
influenced by an unknown marine outfall and is located 212 m further upstream.
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PCA analysis showed a clear difference between the studied sites. Two principal
components account for 100% of the data variance. (Figure 7). The first component (PC1)
explained 75.6% of the data variability, and the variables with higher incidence were
macro items, rubber, direction of river flow and plastics (MAPs). The second component
(PC2) explained 24.4% of the data variability and was positively correlated with glass and
particles and negatively correlated with fibres (Figure 7).

The spatial patterns and abundance of plastics is determined by the direction of
river flow, population and human activities according to the PCA (Figure 7). This is
represented by the increase of plastics. Pueblo Nuevo’s population (17,579 inhabitants),
and Santa Marianita with 65,765 inhabitants, are both influenced by activities such as
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recreation activities (rural and gastronomic tourism, recreational waters), agriculture,
fishing, navigation, the harbour and the slaughterhouse.

4. Discussion

Plastic mass differed at all selected sampling sites, indicating various sources and
environmental factors contributing to the movement of plastics in the Vinces and Los
Tintos rivers. In the three study sites, the sources of contamination for MAPs and MPs
were personal usage, landfill disposal, wastewater discharge, agriculture and recreational
activity. In Vinces River, high concentrations of MP fibres (73%) could be related to the
photodegradation and erosion caused by wind and water from PP bags settled in large
quantities, which directly entered the water body. This problem has been evident since
2012 due to the presence of high levels of faecal coliforms 574.58 NMP/100 mL and
suspended solids (200 mg/L) compared to the Los Tintos River (30 mg/L) [47]. Since MAPs
are distributed via passive dispersion by wind and water currents [48], they are likely
retained in beaches and sediment, whereas larger MAPs from low-density polymers are
transported from rivers to the ocean [49]. This corresponds to the spatial distribution of
plastics at Pueblo Nuevo, located 464 m downstream from a small public beach. Higher
concentrations of larger size classes (>1 mm) are more prone to direct drift from wind and
waves, as identified in the North Adriatic and Algerian and Eastern Levantine coast [50].
This is accountable for 89% of MAPs and 33.2% of MPs identified at this site. A high number
of MP fibres were justified at all sites, originating mostly from PP sandbags (33.2%), plastic
bags (23.1%), food wrappers (16.8%) and EPS cups/plates (8%) [51]. A predominance of
fibres (43%) was also recorded in the province of Esmeraldas [52].

Further upstream in the Vinces River a slaughterhouse is located 119 m north of
Santa Marianita, a likely factor for river contamination due to the high content of organ-
ics and nutrients resulting from the slaughtering process and cleaning of facilities [53].
The high percentage (60.6%) of MP fibres at Santa Marianita could be associated with
untreated wastewater that is discharged into estuaries [54]. WWTPs are an important con-
cern throughout Ecuador; however, the development of water supply sources has higher
priority. Consequently, few WWTP incidents are reported and water quality is poor due to
industrial and domestic wastewater discharge. One study reported that 61 WWTPs have
been installed in the city of Guayaquil, consisting of 3926 km of sanitary sewer systems [55].
These sanitary sewer networks discharge to the Daule and Guayas rivers, whilst a separate
system of storm drainage discharges into Estero Salado. In the Guayas province, 62.5% of
these wastewater treatment systems flow into the rivers within the Gulf of Guayaquil, a
likely cause of MPs at both the Vinces and Los Tintos rivers.

PCA analysis further determined that variables such as anthropogenic activity influ-
enced the distribution of MAPs and MPs (Figure 7). Recreational activity heavily influenced
the number of MAPs recorded amongst the sites at Vinces River. These data coincided
with the National Institute of Census and Statistics of Ecuador (INEC) where it is esti-
mated that Ecuadorians threw away 12,739 tons of garbage daily, of which 11.43% was
plastic (531,461 tons), corresponding to single-use plastic, such as bags and EPS contain-
ers [56]. Human activity also correlated with the number of MPs at all three sites (Pueblo
Nuevo: 396, Santa Marianita: 296, Los Tintos: 247), especially in Santa Marianita where
up to 100,000 visitors have been registered in the high season, generating environmental
impacts [57]. Clusters from the PCA analysis determined that population density and
river flow direction influenced the composition of items recorded. At Los Tintos River,
despite few litter items being recorded (7.3% plastic bags and food packaging), the greatest
concentration of MPs (8.17 g−1) were recorded (Figure 3). A likely reason for this is due
to increased rainfall and alongshore winds producing onshore/offshore currents (known
as Ekman transport), moving debris items further downstream. Hydrographic conditions,
anthropogenic activity, wastewater discharge and population density are just some factors
that influence MP distribution [6,58].
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MP abundance quantified between 0.15 and 2.52 mm in intertidal, very fine sandy
sediment and decreased in abundance with increasing grain size [59]. Visually determining
MPs from sediment grains using a stereomicroscope was sufficient in this study due to
high-quality resolution easily identifying fibres and particles >0.15 mm; fractions smaller
than 0.125 mm are increasingly difficult to identify and it is nearly impossible to distinguish
between plastic and non-plastic debris [60]. To separate these (less dense) MPs, NaCI
solution was the best method due to its cost effectiveness and having a smaller sample
size [44]. The preliminary experiments to validate the NaCI extraction process were
performed with weathered plastic particles of a known polymer type. The yielded recovery
rates were 80% and 85% for PET and PVC particles <1 mm with densities of 1.38 and 1.3,
respectively (Table 4). Particles were lost at the smaller end of the scale due to size.

Table 4. Microplastic polymer types, and rates of recovery.

Sample ID Polymer * Density Size Colour Sample 1 Sample 2 Sample 3 Average Notes

3(1-3) LDPE 0.93 500–710 µm white 89 95 90 91 (±3)

5(1-3) PVC 1.3 <100 µm white 0 0 0 0 too small

12(1-3) PVC ≤1 mm Grey 60 90 90 80 (±17)

4(1-3) PET 1.38 2 mm Grey 100 100 100 100
did not

float/easy
to see

6(1-3) PET 3 mm White 100 100 100 100
did not

float/easy
to see

7(1-3) PET 1.38 <1 mm White 90 60 90 80 (±17)

10(1-3) PET 1.38 1–2 mm Grey 90 70 100 86 (±15)

8(1-3) HDPE 0.97 <1 mm White 100 90 90 93 (±5)

9(1-3) PP 0.946 1–2 mm Red 80 100 100 93 (±11)

11(1-3) PS 1.04 1–2 mm Black 100 100 80 93 (±11)

* LDPE: Low Density Polyethylene; PVC: Polyvinyl Chloride; PET: Polyethylene Tetraphthalate; HDPE: High
Density Polyethylene; PP: Polypropylene; PS: Polystyrene.

It is therefore highly likely that MPs of these polymer types and size classes are
underestimated in this study. An important limitation in the study was the FTIR not being
available and therefore polymer identification could not be attempted. Therefore, this
study relied on visual inspection as a methodological approach for initial enumeration and
acknowledged the potential for selection bias [44]. The absence of data in this region means
the current study provides a first assessment of plastic litter and MP contamination and
contributes significantly to the efforts to improve environmental standards. Overall, more
fibres were found compared to particles, with similar results observed in other studies [6,61].
To better understand potential source regions of MPs, fibre colour has been used as a proxy
for polymer type [62]. The most dominant MP morphotypes at both rivers were black and
blue fibres. These colours were the most prevalent in the digestive tracts of commercial
fishes [23], a concern for a country that showed high MP ingestion by fish in coastal waters
close to urban areas [24]. Based on our results both rivers are dominant pathways of litter
and MPs, which are deposited in the ocean [63].
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5. Conclusions

The Guayas province is highly industrialised and it is influenced by agriculture, fishing,
navigation, animal breeding, recreational waters and the pressure of human settlements
(Table 1). Levels of plastic pollution reported in this study show an increment of MAPs and
MPs which increases with anthropogenic activity. MPs were the most abundant plastics in
the studied sites which increased with human activities and the direction of water flow:
Los Tintos 8.17 g−1, Pueblo Nuevo 7.39 g−1, Santa Marianita 5.55 g−1. MP abundance
decreased as the sediment increased in grain size. Significant differences were recorded
between the litter types, whereby plastic was the most abundant. The Vinces River was
the most polluted river. In particular, the locality of Pueblo Nuevo accounted for a wide
variety of plastic items, tyres, boots, clothing and sandbags. The plastic spatial distribution
showed a major abundance in areas closest to towns that were influenced by tourism and
recreational activities.

Sediments from intertidal zones presented mainly black and blue MPs, consisting more
of fibres than of particles. River sediments act as a sink for MP pollutants. Consequently,
the downstream river flow is discharging plastics into the SE Pacific Ocean. Establishing a
plastic waste monitoring program by applying the techniques used in this study can be
undertaken efficiently and at low cost and can be easily managed. Economic sanctions
should be implemented for owners of restaurants and businesses associated with providing
tourist services, especially focusing on the management of solid waste and residual water
articulated by the Ministry of Tourism and Environment. Educating the local community
on reducing their plastic use and implementing alternatives is essential to combating plastic
pollution in Ecuador. This baseline study will provide data towards future environmental
education projects.
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