Next Issue
Volume 3, December
Previous Issue
Volume 3, June
 
 

Macromol, Volume 3, Issue 3 (September 2023) – 13 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 4645 KiB  
Review
Materials, Weaving Parameters, and Tensile Responses of Woven Textiles
by Antonella Patti and Domenico Acierno
Macromol 2023, 3(3), 665-680; https://doi.org/10.3390/macromol3030037 - 21 Sep 2023
Cited by 2 | Viewed by 2392
Abstract
Fabrics have been recognized as a necessary component of daily life due to their involvement in garments, home textiles, and industrial textiles. The mechanical performance of textiles was considered essential to meet the end-user requirements for strength and durability. The purpose of this [...] Read more.
Fabrics have been recognized as a necessary component of daily life due to their involvement in garments, home textiles, and industrial textiles. The mechanical performance of textiles was considered essential to meet the end-user requirements for strength and durability. The purpose of this work was to provide an overview of the textile structures and tensile strengths of woven textiles. Different types of textile structures, depending on the weaving methods (woven, braided, knitted, non-woven) and the most common architectures of woven fabrics (plain weave, twill and sateen), were presented. Common materials constituting the textiles’ structures and a comparison in terms of the density, Young’s modulus and tensile strength between natural (plant-based, animal-based, and mineral-based) and synthetic fibers were reported. The mechanical properties of woven textiles were presented for neat and coated textiles, primarily in terms of the tensile strength. Depending on the cases, typical regions in the load–displacement curve (i.e., crimp, elastic, non-linear failure, thread fracture) were highlighted. The impact of the architecture, yarn distance and size, and yarn twisting on the tensile strength of woven fabrics was then illustrated. Full article
Show Figures

Graphical abstract

12 pages, 3636 KiB  
Article
Molecular Dynamics Calculations for the Temperature Response of Poly(alkylated tri(ethylene oxide)isocyanate) Aqueous Solution
by Shunsuke Mizutani, Shunya Kita, Naoya Sakai, Takuya Yamamoto, Andrej Koleżyński, Toyoji Kakuchi and Shin-ichiro Sato
Macromol 2023, 3(3), 653-664; https://doi.org/10.3390/macromol3030036 - 08 Sep 2023
Cited by 1 | Viewed by 799
Abstract
Aqueous solutions of conventional temperature-responsive amphiphilic polymers undergo a coil–globule conformational transition around the lower critical solution temperature (LCST) that causes the polymer surfaces to become hydrophobic and the polymers to aggregate together. Isocyanate polymers with alkylated oligo(ethylene oxide) side chains are expected [...] Read more.
Aqueous solutions of conventional temperature-responsive amphiphilic polymers undergo a coil–globule conformational transition around the lower critical solution temperature (LCST) that causes the polymer surfaces to become hydrophobic and the polymers to aggregate together. Isocyanate polymers with alkylated oligo(ethylene oxide) side chains are expected to have rigid main chains and, thus, do not undergo the coil–globule structural transition, but they have recently been reported to exhibit temperature-responsive properties. In this study, molecular dynamics was used to calculate the agglomeration tendencies of two chains of poly(alkylated tri(ethylene oxide)isocyanate) (PRTEOIC, where R = methyl (Me) or ethyl (Et)) in aqueous solution to elucidate the LCST phenomenon in the absence of coil–globule conformational transition. Our MD simulations showed that aggregation also occurs in rod polymers. Furthermore, we found that both (PMeTEOIC)2 and (PEtTEOIC)2 showed parallel agglomeration of the two molecular chains with increasing temperature, but only (PMeTEOIC)2 showed a metastable T-shaped agglomeration in the middle temperature range. The crossing-point temperature (TCRP) at which the density of the first hydrophobic hydration shell around the sidechain alkyl group equals the bulk water density is a useful indicator for predicting the LCST of rod polymers with dense side chains terminated by alkyl groups. Full article
Show Figures

Figure 1

17 pages, 1831 KiB  
Article
Thermal Treatment of a Commercial Polycyanoacrylate Adhesive Addressed for Instant Glass Restoration, for Investigating Its Ageing Tolerance
by Evangelia C. Vouvoudi, George A. Tamias, Evangelia A. Chatzicharistou and Dimitris S. Achilias
Macromol 2023, 3(3), 636-652; https://doi.org/10.3390/macromol3030035 - 04 Sep 2023
Viewed by 1538
Abstract
In the present study, the results of an experimental work on the thermal endurance and decomposition products of the commercial restorative adhesive Loctite® Super Attak Glass, being applied on glass surfaces, are presented. The clarity of the cyanoacrylate polymer and its rapid [...] Read more.
In the present study, the results of an experimental work on the thermal endurance and decomposition products of the commercial restorative adhesive Loctite® Super Attak Glass, being applied on glass surfaces, are presented. The clarity of the cyanoacrylate polymer and its rapid anionic polymerization reaction are outcomes of the chemistry of the monomer and its activity. First, evaluation of the reversibility of this glue was examined through the solubility tests. It was verified that the adhesive is reversible since it is diluted in several solvents. Later, by applying pyrolysis conjugated with gas chromatography and mass spectrometry (Py–GC/MS), the thermal profile of the polymer is recorded in its neat form and in its aged state (weathered under the influence of UV-irradiation or thermal treatment at 50 and 75 °C). The decomposition products are detected and identified and, finally, possible reactions are investigated. Emphasis is placed on those that could be considered harmful to cultural heritage materials and objects. The fragments by the pyrolytic reactions identified mainly concern esters, less aldehydes and alcohols, small nitrogen compounds, and in some cases unsaturated hydrocarbons with higher molecular weight. Additives such as radical polymerization inhibitors and stabilizers, as well as some plasticizers, were also detected. Full article
Show Figures

Figure 1

22 pages, 1794 KiB  
Review
Potential Agricultural Uses of Micro/Nano Encapsulated Chitosan: A Review
by Melissa García-Carrasco, Octavio Valdez-Baro, Luis A. Cabanillas-Bojórquez, Manuel J. Bernal-Millán, María M. Rivera-Salas, Erick P. Gutiérrez-Grijalva and J. Basilio Heredia
Macromol 2023, 3(3), 614-635; https://doi.org/10.3390/macromol3030034 - 29 Aug 2023
Cited by 1 | Viewed by 2018
Abstract
Chitosan is a non-toxic, biodegradable, and biocompatible natural biopolymer widely used as a nanocarrier, emulsifier, flocculant, and antimicrobial agent with potential applications in industry. Recently, chitosan has been used as an encapsulating agent for bioactive plant compounds and agrochemicals by different technologies, such [...] Read more.
Chitosan is a non-toxic, biodegradable, and biocompatible natural biopolymer widely used as a nanocarrier, emulsifier, flocculant, and antimicrobial agent with potential applications in industry. Recently, chitosan has been used as an encapsulating agent for bioactive plant compounds and agrochemicals by different technologies, such as spray-drying and nanoemulsions, to enhance antimicrobial activity. Chitosan nanocomposites have been shown to increase potential biocidal, antibacterial, and antifungal activity against pathogens, presenting higher stability, decreasing degradation, and prolonging the effective concentration of these bioactive compounds. Therefore, the objective of this work is to review the most outstanding aspects of the most recent developments in the different methods of encapsulation of bioactive compounds (phenolic compounds, essential oils, among others) from plants, as well as the applications on phytopathogenic diseases (fungi and bacteria) in vitro and in vivo in cereal, fruit and vegetable crops. These perspectives could provide information for the future formulation of products with high efficacy against phytopathogenic diseases as an alternative to chemical products for sustainable agriculture. Full article
(This article belongs to the Special Issue Functional Polymer-Based Materials)
Show Figures

Graphical abstract

45 pages, 5788 KiB  
Review
Recent Advances in Electrospun Fibers for Biological Applications
by Bénédicte Fromager, Emilie Marhuenda, Benjamin Louis, Norbert Bakalara, Julien Cambedouzou and David Cornu
Macromol 2023, 3(3), 569-613; https://doi.org/10.3390/macromol3030033 - 16 Aug 2023
Cited by 3 | Viewed by 1555
Abstract
Electrospinning is a simple and versatile method to generate nanofibers. Remarkable progress has been made in the development of the electrospinning process. The production of nanofibers is affected by many parameters, which influence the final material properties. Electrospun fibers have a wide range [...] Read more.
Electrospinning is a simple and versatile method to generate nanofibers. Remarkable progress has been made in the development of the electrospinning process. The production of nanofibers is affected by many parameters, which influence the final material properties. Electrospun fibers have a wide range of applications, such as energy storage devices and biomedical scaffolds. Among polymers chosen for biological scaffolds, such as PLA or collagen, polyacrylonitrile (PAN) has received increasing interest in recent years due to its excellent characteristics, such as spinnability, biocompatibility, and commercial viability, opening the way to new applications in the biotechnological field. This paper provides an overview of the electrospinning process of a large range of polymers of interest for biomedical applications, including PLA and PEO. It covers the main parameters and operation modes that affect nanofiber fabrication. Their biological applications are reviewed. A focus is placed on PAN fiber formation, functionalization, and application as scaffolds to allow cell growth. Overall, nanofiber scaffolds appear to be powerful tools in medical applications that need controlled cell culture. Full article
(This article belongs to the Special Issue Functional Polymer-Based Materials)
Show Figures

Figure 1

15 pages, 3907 KiB  
Article
Development of Water-Resistant Autohesive Strength of Polyethylene Plates with Photografting of Alkyl (Meth)Acrylates
by Kazunori Yamada, Yuki Kazama and Yuji Kimura
Macromol 2023, 3(3), 554-568; https://doi.org/10.3390/macromol3030032 - 15 Aug 2023
Viewed by 800
Abstract
This study aims to confer autohesive strength to polyethylene (PE) plates by swelling the grafted layers, which were formed on the PE plates grafted with alkyl (meth)acrylate monomers, with 1,4-dioxane, and subsequently heat-pressing them. For the methyl methacrylate (MMA)-grafted PE (PE-g-PMMA) plates, the [...] Read more.
This study aims to confer autohesive strength to polyethylene (PE) plates by swelling the grafted layers, which were formed on the PE plates grafted with alkyl (meth)acrylate monomers, with 1,4-dioxane, and subsequently heat-pressing them. For the methyl methacrylate (MMA)-grafted PE (PE-g-PMMA) plates, the location of grafting was restricted to the outer surface region and the grafted layer with higher densities of grafted PMMA chains was composed. When the grafted PE plates were immersed in 1,4-dioxane, and then heat-pressed while applying the load, autohesion was developed. The substrate failure was observed for the PE-g-PMMA plates and the grafted amount at which the substrate failure was observed decreased with the procedures that decreased the methanol concentration of the solvent, the MMA concentration, the grafting temperature, and the heat-press temperature, and/or increased the load. The lowest grafted amount of 45 μmol/cm2 for the substrate failure was obtained under the conditions where the PE-g-PMMA plate prepared at 0.75 M and 60 °C in a 70 vol% aqueous methanol solution was heat-pressed at 60 °C while applying the load of 2.0 kg/cm2. The swelling of the grafted layers with 1,4-dioxane considerably contributed to the development of autohesion, bringing the inter-diffusion of grafted PMMA chains and coincident entanglement of grafted PMMA chains during the heat-pressing. The fact that the substrate failure occurred indicates that an autohesive strength higher than the ultimate strength of the used PE plate was obtained. Our approach provides a novel procedure to develop the water-resistant autohesion of PE plates. Full article
(This article belongs to the Special Issue Functionalization of Polymers for Advanced Applications)
Show Figures

Figure 1

30 pages, 5246 KiB  
Review
Electrospun Scaffolds for Tissue Engineering: A Review
by Guadalupe Gabriel Flores-Rojas, Bélen Gómez-Lazaro, Felipe López-Saucedo, Ricardo Vera-Graziano, Emilio Bucio and Eduardo Mendizábal
Macromol 2023, 3(3), 524-553; https://doi.org/10.3390/macromol3030031 - 03 Aug 2023
Cited by 5 | Viewed by 4597
Abstract
Tissue engineering and regenerative medicine have emerged as innovative approaches to enhance clinical outcomes by addressing tissue lesions and degenerations that can significantly impair organ function. Since human tissues have limited regenerative capacity, the field of regenerative medicine aims to restore damaged tissues [...] Read more.
Tissue engineering and regenerative medicine have emerged as innovative approaches to enhance clinical outcomes by addressing tissue lesions and degenerations that can significantly impair organ function. Since human tissues have limited regenerative capacity, the field of regenerative medicine aims to restore damaged tissues and their functionalities. Recent decades have witnessed remarkable progress in materials science, tissue engineering, and medicine, leading to the development of regenerative engineering. This interdisciplinary field has revolutionized the production of artificial matrices, enabling the design of anatomically accurate structures with enhanced biocompatibility, bioabsorption, and cell adhesion. Among the techniques utilized for fabricating cellular scaffolds, the electrospinning of fibers stands out as an ideal approach due to its ability to mimic the characteristics of the extracellular matrix (ECM). Electrospun scaffolds exhibit distinct advantages, including a high surface area-to-volume ratio, exceptional porosity, uniformity, compositional diversity, structural flexibility, and the ease of functionalization with bioactive molecules for controlled release. These versatile properties allow for the creation of nanofiber scaffolds that closely resemble the architecture of the ECM. Consequently, they facilitate the transport of nutrients and oxygen to cells as well as the incorporation of growth factors to stimulate cell growth. These advancements open up a wide range of applications in the field of regenerative medicine. Full article
Show Figures

Graphical abstract

17 pages, 1095 KiB  
Review
Polyphenol-Loaded Polymeric Matrixes as Potential Biopharmaceuticals against Cancer
by Manuel Adrian Picos-Salas, Melissa García-Carrasco, José Basilio Heredia, Luis Angel Cabanillas-Bojórquez, Nayely Leyva-López and Erick Paul Gutiérrez-Grijalva
Macromol 2023, 3(3), 507-523; https://doi.org/10.3390/macromol3030030 - 03 Aug 2023
Viewed by 1306
Abstract
Polyphenols have attracted attention for their anti-inflammatory, antidiabetic, and anticancer properties. Due to the antioxidant and anti-inflammatory potential of these molecules, they are also proposed as a potential therapeutic tool to prevent complications of cancer and decrease the secondary effects of conventional chemotherapeutic [...] Read more.
Polyphenols have attracted attention for their anti-inflammatory, antidiabetic, and anticancer properties. Due to the antioxidant and anti-inflammatory potential of these molecules, they are also proposed as a potential therapeutic tool to prevent complications of cancer and decrease the secondary effects of conventional chemotherapeutic drugs. Nonetheless, polyphenols such as flavonoids and phenolic acids have low bioavailability, as they are highly metabolized. Thus, administration strategies have been developed to enhance the anticancer properties of polyphenols. Most of these strategies involve different encapsulation techniques, such as nanoencapsulation, nanoemulsion, and the use of other polymeric matrixes. These techniques can increase the activity of these compounds after going through the gastrointestinal process and improve their solubility in an aqueous medium. This review comprises recent studies regarding encapsulation techniques to enhance the bioactivity of polyphenols against cancer and their current state in clinical studies. Overall, micro- and nanoencapsulation techniques with different polymers enhanced the anticancer properties of polyphenols by inhibiting tumor growth, modulating the expression of genes related to metastasis and angiogenesis, decreasing the expression of pro-inflammatory biomarkers. Full article
(This article belongs to the Special Issue Functionalization of Polymers for Advanced Applications)
Show Figures

Graphical abstract

30 pages, 6958 KiB  
Review
Oxo-Additives for Polyolefin Degradation: Kinetics and Mechanism
by Eldar A. Mamin, Petr V. Pantyukhov and Anatoly A. Olkhov
Macromol 2023, 3(3), 477-506; https://doi.org/10.3390/macromol3030029 - 24 Jul 2023
Viewed by 1705
Abstract
This review considers the recent investigations in the scope of biodegradability of synthetic polymers, spanning polyethylene (PE), polypropylene (PP), and their corresponding composites, with a focus on the influence of oxo-additives (mostly transition metal salts). The types of oxo-additives and the mechanisms of [...] Read more.
This review considers the recent investigations in the scope of biodegradability of synthetic polymers, spanning polyethylene (PE), polypropylene (PP), and their corresponding composites, with a focus on the influence of oxo-additives (mostly transition metal salts). The types of oxo-additives and the mechanisms of oxidation acceleration are discussed. Furthermore, the influence of oxo-additives on both physicochemical and biological stages of degradation is evaluated (laboratory and field experiments with microorganisms/fungi action) with recent standards suggested for degradation estimation. Comparisons of the metal salts are given with respect to catalysis, as well as the synergetic influence of additives. The additives presented on the commercial market are also discussed. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
14 pages, 5707 KiB  
Article
Conversion of Polypropylene (PP) Foams into Auxetic Metamaterials
by Xiao-Yuan Chen and Denis Rodrigue
Macromol 2023, 3(3), 463-476; https://doi.org/10.3390/macromol3030028 - 21 Jul 2023
Viewed by 863
Abstract
In this work, a simple and environmentally friendly process combining low pressure (vacuum) and mechanical compression is proposed to convert recycled polypropylene (PP) foams (28 kg/m3) into low density foams (90–131 kg/m3) having negative tensile and compressive Poisson’s ratios [...] Read more.
In this work, a simple and environmentally friendly process combining low pressure (vacuum) and mechanical compression is proposed to convert recycled polypropylene (PP) foams (28 kg/m3) into low density foams (90–131 kg/m3) having negative tensile and compressive Poisson’s ratios (NPR). The main objective of the work was to determine the effect of processing conditions (vacuum time, temperature and mechanical pressure). Based on the optimized conditions, the tensile Poisson’s ratio of the resulting auxetic foams reached −1.50, while the minimum compressive Poisson’s ratio was −0.32 for the same sample. The foam structure was characterized via morphological analysis (SEM) to determine any changes related to the treatment applied. Finally, the tensile and compressive properties (Young’s modulus, strain energy, energy dissipation and damping capacity) are also presented and discussed. It was observed that the mechanical properties of the resulting auxetic foams were improved compared to the original PP foam (PP-O) for all tensile properties in terms of modulus (19.9 to 59.8 kPa), strength (0.298 to 1.43 kPa) elongation at break (28 to 77%), energy dissipation (14.4 to 56.3 mJ/cm3) and damping capacity (12 to 19%). Nevertheless, improvements were also observed under compression in terms of the energy dissipation (1.6 to 3.6 mJ/cm3) and the damping capacity (13 to 19%). These auxetic foams can find applications in sport and military protective equipment, as well as any energy mitigation system. Full article
Show Figures

Figure 1

12 pages, 4445 KiB  
Article
Effects of Lectin Preparations from Microgramma vacciniifolia Rhizomes on the Survival, Digestive Enzymes, and Acetylcholinesterase Activity of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae)
by Nataly Diniz de Lima Santos, Lidiane Pereira de Albuquerque, Marcus Mello Rego de Amorim, Juliane Nancy de Oliveira Silva, Thamara Figueiredo Procópio, Patryck Érmerson Monteiro dos Santos, Patrícia Maria Guedes Paiva, Mercia Rodrigues Barros, Thiago Henrique Napoleão and Emmanuel Viana Pontual
Macromol 2023, 3(3), 451-462; https://doi.org/10.3390/macromol3030027 - 05 Jul 2023
Viewed by 978
Abstract
In this study, we evaluated the susceptibility of Alphitobius diaperinus larvae and adults to saline extract (SE), lectin-rich fraction (FR), and isolated lectin (MvRL) from Microgramma vacciniifolia rhizomes. To determine immediate effects, larvae and adults were exposed to SE (10.5 mg/mL), FR (7.5 [...] Read more.
In this study, we evaluated the susceptibility of Alphitobius diaperinus larvae and adults to saline extract (SE), lectin-rich fraction (FR), and isolated lectin (MvRL) from Microgramma vacciniifolia rhizomes. To determine immediate effects, larvae and adults were exposed to SE (10.5 mg/mL), FR (7.5 mg/mL), or MvRL (1.0 mg/mL) for 48 h. Live insects were evaluated for acetylcholinesterase (AChE) activity. The delayed effects of SE (10.5 mg/mL), FR (7.5 mg/mL), and MvRL (0.2 and 0.4 mg/mL) were checked by incubating the adults for 16 days with a diet containing the preparations. In vitro effects on gut digestive enzymes were investigated. All preparations showed immediate larvicidal effect but had no effect on adult survival. Extracts from FR-treated larvae showed higher AChE activity than control insects. In the delayed effect assay, the adults lost biomass after consuming SE and FR. FR was the most effective inhibitory agent of trypsin-like and amylase activities (88% and 65% inhibition, respectively). All preparations inhibited endoglucanase activity in 94–98%, while SE and FR inhibited exoglucanase activity in 93.2 and 94.1%, respectively. In conclusion, M. vacciniifolia rhizomes contain compounds (including MvRL) that affect the survival and physiology of A. diaperinus, acting as potential natural insecticides for controlling this pest. Full article
Show Figures

Graphical abstract

20 pages, 5447 KiB  
Article
The Influence of the Molecular Weight of Poly(Ethylene Oxide) on the Hydrolytic Degradation and Physical Properties of Polycaprolactone Binary Blends
by Maurice Dalton, Farnoosh Ebrahimi, Han Xu, Ke Gong, Gustavo Fehrenbach, Evert Fuenmayor, Emma J. Murphy and Ian Major
Macromol 2023, 3(3), 431-450; https://doi.org/10.3390/macromol3030026 - 03 Jul 2023
Cited by 7 | Viewed by 2049
Abstract
The use of biodegradable polymers in tissue engineering has been widely researched due to their ability to degrade and release their components in a controlled manner, allowing for the potential regeneration of tissues. Melt blending is a common method for controlling the degradation [...] Read more.
The use of biodegradable polymers in tissue engineering has been widely researched due to their ability to degrade and release their components in a controlled manner, allowing for the potential regeneration of tissues. Melt blending is a common method for controlling the degradation rate of these polymers, which involves combining these materials in a molten state to create a homogenous mixture with tailored properties. In this study, polycaprolactone (PCL) was melt blended with hydrophilic poly (ethylene oxide) (PEO) of different molecular weights to assess its effect on PCL material performance. Hydrolytic degradation, thermal and viscoelastic properties, and surface hydrophilicity were performed to contrast the properties of the blends. DSC, DMA, and FTIR were performed on selected degraded PCL/PEO specimens following mass loss studies. The results showed that adding PEO to PCL reduced its melt viscosity-torque and melt temperature while increasing its hydrophilicity, optimizing PCL/PEO blend for soft tissue engineering applications and could contribute to the development of more effective and biocompatible materials for soft tissue regeneration. Full article
Show Figures

Figure 1

10 pages, 2300 KiB  
Article
Reaction of Bacterial Poly-3-Hydroxybutyrate with Thionyl Chloride in the Presence of Zinc Chloride, and the Preparation of Chlorine-Containing Oligomers
by Anatoly Nikolayevich Boyandin
Macromol 2023, 3(3), 421-430; https://doi.org/10.3390/macromol3030025 - 02 Jul 2023
Viewed by 1094
Abstract
The degradation patterns of bacterial poly-3-hydroxybutyrate (PHB) in chloroform solution under the action of thionyl chloride in the presence of zinc chloride were studied. When 2.5.mol of zinc chloride and 100 mmol of thionyl chloride were introduced into the solution of 25 mmol [...] Read more.
The degradation patterns of bacterial poly-3-hydroxybutyrate (PHB) in chloroform solution under the action of thionyl chloride in the presence of zinc chloride were studied. When 2.5.mol of zinc chloride and 100 mmol of thionyl chloride were introduced into the solution of 25 mmol PHB, a decrease in the molecular weight of the polymer was observed. During the reaction, a relatively rapid decrease in the molecular weight of the polymer was noted in the first hour of the experiment; thus, the values of the weight-average molecular weight decreased from 840 kDa to 483, 167, 58.6, and 16.7 kDa after 1, 5, 24, and 96 h of the experiment, respectively. The polydispersity also gradually decreased from 2.69 at the beginning to 1.92 at the end of the experiment. Oligomers of PHB containing 3-chlorobutyric acid and 3-hydroxybutyryl chloride residues at the O and C ends of the polymer chain, respectively, were obtained. The results confirm the ability of thionyl chloride to interact with aliphatic esters in the presence of zinc compounds, and demonstrate the possibility of using this reaction to produce oligomeric derivatives of polyesters bearing chloralkyl and acid chloride functional groups. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop