Next Issue
Volume 3, September
Previous Issue
Volume 3, March
 
 

Electricity, Volume 3, Issue 2 (June 2022) – 5 articles

Cover Story (view full-size image): As government and international bodies focus more on the impact of climate change, low carbon technologies (LCTs) will become more prominent on power distribution networks, and their cable loading regimes will change significantly. No studies have discussed the influence of LCTs on the life of installed power cables, despite the fact that this is critical to both increasing the penetration of LCT on distribution networks and may expose vulnerabilities in legacy infrastructure through increases in load. This paper uses a physics-based thermal lifetime model based on projected uptake trends for prominent LCTs to evaluate the impact on cable lifetime. We show that the projected uptake of EVs and heat pumps will have a detrimental effect of cable life. Based on the projected uptake of these LCTs, a 30% reduction in cable lifetime may be possible. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 1597 KiB  
Article
Hybrid AC/DC Provisional Microgrid Planning Model Considering Converter Aging
by Omid Rezaei, Omid Mirzapour, Mohammad Panahazari and Hassan Gholami
Electricity 2022, 3(2), 236-250; https://doi.org/10.3390/electricity3020014 - 07 Jun 2022
Cited by 18 | Viewed by 2531
Abstract
Renewable energy deployment through distributed energy resources is among the central goals of future power systems. Microgrids have proven to be an economically viable solution for distributed energy resources’ integration into the power system and benefits customers with uninterrupted power supply. In this [...] Read more.
Renewable energy deployment through distributed energy resources is among the central goals of future power systems. Microgrids have proven to be an economically viable solution for distributed energy resources’ integration into the power system and benefits customers with uninterrupted power supply. In this context, provisional microgrids have been introduced with the main goal of rapid renewable energy resource deployment. Since a considerable portion of renewable energy resources, as well as residential loads, are DC, and this portion is expected to grow even further, hybrid AC/DC design of provisional microgrids can improve both efficiency and economic benefit through an optimal arrangement of AC/DC feeders and converters. This paper presents a planning model for hybrid provisional microgrids considering the long-term influence of energy storage and the aging process of converters on economic revenues. Due to several intrinsic uncertainties involved in provisional microgrid operation, robust optimization is applied to the problem to ensure optimality under worst-case conditions. Results show the economic benefits of a hybrid provisional microgrid compared to a provisional microgrid and independent microgrid. Several sensitivity analyses are carried out to identify critical factors in planning. Full article
Show Figures

Figure 1

16 pages, 2326 KiB  
Article
Impact of Increased Penetration of Low-Carbon Technologies on Cable Lifetime Estimations
by Xu Jiang, Edward Corr, Bruce Stephen and Brian G. Stewart
Electricity 2022, 3(2), 220-235; https://doi.org/10.3390/electricity3020013 - 27 May 2022
Cited by 1 | Viewed by 2497
Abstract
Cables are the largest assets by volume on power distribution networks and the assets with the least health information routinely gathered. Projections over the next 8 years suggest increased penetration of low-carbon technology (LCT) at the distribution level with higher loads resulting from [...] Read more.
Cables are the largest assets by volume on power distribution networks and the assets with the least health information routinely gathered. Projections over the next 8 years suggest increased penetration of low-carbon technology (LCT) at the distribution level with higher loads resulting from electric vehicle (EV) and heat pump uptake. Over this period, increased cable loading will directly influence their lifetimes and may mean that existing asset management practices need to be revised to understand the specific impact on end-of-life assessment. Accordingly, this paper uses a physics-based thermal lifetime model based on projected uptake trends for LCTs to evaluate the impact on distribution cable lifetime. Two case studies are presented considering portions of network and the ultimate impact on asset life over the next decade. Two commonly used cables are considered to quantify the lifetime reduction caused by LCT for asset fleets. The paper shows that the projected uptake of EVs and heat pumps will have a detrimental effect on cable life with a 30% reduction in cable lifetime possible. Full article
Show Figures

Figure 1

18 pages, 7695 KiB  
Article
Intrinsic Characteristics of Forward Simulation Modeling Electric Vehicle for Energy Analysis
by Christian Montaleza, Paul Arévalo, Marcos Tostado-Véliz and Francisco Jurado
Electricity 2022, 3(2), 202-219; https://doi.org/10.3390/electricity3020012 - 24 May 2022
Cited by 4 | Viewed by 2350
Abstract
The forward method for modeling electric vehicles is one of the most suitable for estimating energy consumption in different imposed driving cycles. However, a detailed description of the methodology used for the development of electric vehicle models is necessary and is scarce in [...] Read more.
The forward method for modeling electric vehicles is one of the most suitable for estimating energy consumption in different imposed driving cycles. However, a detailed description of the methodology used for the development of electric vehicle models is necessary and is scarce in the current literature. To fill this gap, this study focuses on highlighting the intrinsic characteristics through a theoretical study with a mathematical model, complemented by demonstrative simulations in Matlab/Simulink. The results show that the forward method can be estimated more accurately based on the energy consumption of the electric vehicle. Moreover, this paper aims to be explicitly descriptive for the development of more complex electric vehicle models to incorporate real driving cycles, being able to size the drivetrain of the vehicle itself or develop ecological routes. Full article
(This article belongs to the Special Issue Recent Advances toward Carbon-Neutral Power System)
Show Figures

Figure 1

20 pages, 3968 KiB  
Article
Coordinating Capacity Calculation via Electricity Market Coupling: Insights from the H2020 CROSSBOW Project
by Nikos Andriopoulos, Ioannis Georgantas, Despoina I. Makrygiorgou, Dimitris Skipis, Christos Dikaiakos, Ioannis Moraitis, Athanasios Botsis and Dimitrios Papadaskalopoulos
Electricity 2022, 3(2), 182-201; https://doi.org/10.3390/electricity3020011 - 19 Apr 2022
Cited by 2 | Viewed by 2618
Abstract
CROSS BOrder management of variable renewable energies and storage units enabling a transnational Wholesale market (CROSSBOW) is an EC-funded project, whose aim is to facilitate the shared use of energy resources by fostering cross-border management of variable renewable energies and storage units, enabling [...] Read more.
CROSS BOrder management of variable renewable energies and storage units enabling a transnational Wholesale market (CROSSBOW) is an EC-funded project, whose aim is to facilitate the shared use of energy resources by fostering cross-border management of variable renewable energies and storage units, enabling higher penetration of renewable energy sources (RES) whilst reducing network operational costs and improving economic benefits of clean energies and storage units. Towards these goals, CROSSBOW boosts regional cooperation among the system operators in Southeastern Europe (SEE), by deploying nine different tools to support the security coordination center (SCC) of the region. More specifically, the main CROSSBOW product, namely CROSSBOW Regional Operation Centre (CROSSBOW ROC) has proposed and demonstrated a set of functionalities for regional management and operation that enhance the existing regional structures, extending the capabilities of the already established Regional Security Coordinator (RSC) initiatives. Beyond enhancing RSC mandatory functions (including adequacy forecasts, coordinated security analysis, capacity calculations, and outage planning coordination), the ROC-BC product has developed new functions, linking the security considerations of involved TSOs with the operation of the fast-developing and harmonized electricity markets. In this paper, we investigate approaches for coordinated capacity calculation and cross-border trading via market coupling, developed within the ROC-BC product of CROSSBOW. Moreover, we present the final demonstration results as a part of ROC fundamental functionalities. Specifically, both net transfer capacity (NTC) and flow-based (FB) methods are examined and compared within a case study applying to the SEE region. The presented results demonstrate that the FB method exhibits better performance in all examined scenarios, considering three different key performance indicators (KPIs). Full article
Show Figures

Figure 1

20 pages, 4661 KiB  
Article
Determination of Dynamic Characteristics for Predicting Electrical Load Curves of Mining Enterprises
by Denis Anatolievich Ustinov and Konstantin Alekseevich Khomiakov
Electricity 2022, 3(2), 162-181; https://doi.org/10.3390/electricity3020010 - 08 Apr 2022
Cited by 2 | Viewed by 3164
Abstract
The calculation of electrical loads is the first and most significant stage in the design of the power supply system. It is essential to make the right choice when choosing the power electrical equipment: transformers, power lines, and switching devices. Underestimation or overestimation [...] Read more.
The calculation of electrical loads is the first and most significant stage in the design of the power supply system. It is essential to make the right choice when choosing the power electrical equipment: transformers, power lines, and switching devices. Underestimation or overestimation of the calculated values can lead to large losses and an increase in capital costs. Therefore, the reliability of the results plays a key role. The use of energy-saving technologies and energy-efficient electrical equipment leads to a change in the nature and level of power consumption, which must be taken into account when determining the electrical loads. The existing methods leave out dynamic characteristics of electrical load curves, so the calculated values are overestimated by up to 40%. This study shows a load calculation method with the normalized correlation functions and its parameters at the level of the individual and group electricity consumers. As a result, the difference between the calculated and experimental values does not exceed 5%. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop