Next Issue
Volume 5, June
Previous Issue
Volume 4, December
 
 

J. Nucl. Eng., Volume 5, Issue 1 (March 2024) – 8 articles

Cover Story (view full-size image): The high-temperature corrosion of 15-15Ti cladding material in high burn-up situations has been an important topic for lead-cooled Gen-IV reactors. This study aims to examine the simultaneous impact of liquid lead and cesium molybdate on the cladding tube. A capsule was designed and built for exposures between 600 °C and 1000 °C. In order to simulate a cladding breach, a notch design on the cladding tube was introduced. Material thinning by corrosion and leaching at ≥900 °C caused breaches at the notches after 168 h. The temperature-dependent cladding thinning phenomenon was used for kinetic interpretation. As the first of a two-part study, this paper will focus on the capsule performance, including cross-section preparation and preliminary results on the interface chemistry. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
3 pages, 603 KiB  
Correction
Correction: Chakin et al. Tritium Desorption Behavior and Microstructure Evolution of Beryllium Irradiated at Low Temperature Up to High Neutron Dose in BR2 Reactor. J. Nucl. Eng. 2023, 4, 552–564
by Vladimir Chakin, Rolf Rolli, Ramil Gaisin and Wouter van Renterghem
J. Nucl. Eng. 2024, 5(1), 111-113; https://doi.org/10.3390/jne5010008 - 08 Mar 2024
Viewed by 231
Abstract
The authors would like to make the following corrections to the published paper [...] Full article
Show Figures

Figure 7

20 pages, 2471 KiB  
Article
Interactions of Low-Energy Muons with Silicon: Numerical Simulation of Negative Muon Capture and Prospects for Soft Errors
by Jean-Luc Autran and Daniela Munteanu
J. Nucl. Eng. 2024, 5(1), 91-110; https://doi.org/10.3390/jne5010007 - 05 Mar 2024
Viewed by 485
Abstract
In this paper, the interactions of low-energy muons (E < 10 MeV) with natural silicon, the basic material of microelectronics, are studied by Geant4 and SRIM simulation. The study is circumscribed to muons susceptible to slowdown/stop in the target and able to transfer [...] Read more.
In this paper, the interactions of low-energy muons (E < 10 MeV) with natural silicon, the basic material of microelectronics, are studied by Geant4 and SRIM simulation. The study is circumscribed to muons susceptible to slowdown/stop in the target and able to transfer sufficient energy to the semiconductor to create single events in silicon devices or related circuits. The capture of negative muons by silicon atoms is of particular interest, as the resulting nucleus evaporation and its effects can be catastrophic in terms of the emission of secondary ionizing particles ranging from protons to aluminum ions. We investigate in detail these different nuclear capture reactions in silicon and quantitatively evaluate their relative importance in terms of number of products, energy, linear energy transfer, and range distributions, as well as in terms of charge creation in silicon. Finally, consequences in the domain of soft errors in microelectronics are discussed. Full article
Show Figures

Graphical abstract

17 pages, 731 KiB  
Article
Design and Application of DG-FEM Basis Functions for Neutron Transport on Two-Dimensional and Three-Dimensional Hexagonal Meshes
by Ansar Calloo, David Labeurthre and Romain Le Tellier
J. Nucl. Eng. 2024, 5(1), 74-90; https://doi.org/10.3390/jne5010006 - 26 Feb 2024
Viewed by 474
Abstract
Reactor design requires safety studies to ensure that the reactors will behave appropriately under incidental or accidental situations. Safety studies often involve multiphysics simulations where several branches of reactor physics are necessary to model a given phenomenon. In those situations, it has been [...] Read more.
Reactor design requires safety studies to ensure that the reactors will behave appropriately under incidental or accidental situations. Safety studies often involve multiphysics simulations where several branches of reactor physics are necessary to model a given phenomenon. In those situations, it has been observed that the neutron transport part is still a bottleneck in terms of computational times, with more than 80% of the total time. In the case of hexagonal lattice reactors, transport solvers usually invert the discretised Boltzmann equation by discretising the regular hexagon into lozenges or triangles. In this work, we seek to reduce the computational burden of the neutron transport solver by designing a numerical spatial discretisation scheme that would be more appropriate for honeycomb meshes. In our past research efforts, we have set up interesting discretisation schemes in the finite element setting in 2D, and we wish to extend them to 3D geometries that are prisms with a hexagonal base. In 3D, a rigorous method was derived to shrink the tensor product between 2D and 1D bases to minimum terms. We have applied these functions successfully on a reactor benchmark—Takeda Model 4—to compare and contrast the numerical results in a physical setting. Full article
Show Figures

Figure 1

17 pages, 20772 KiB  
Article
Reaction Capsule Design for Interaction of Heavy Liquid Metal Coolant, Fuel Cladding, and Simulated JOG Phase at Accident Conditions
by Doğaç Tarı, Teodora Retegan Vollmer and Christine Geers
J. Nucl. Eng. 2024, 5(1), 57-73; https://doi.org/10.3390/jne5010005 - 06 Feb 2024
Viewed by 482
Abstract
High temperature corrosion of fuel cladding material (15-15Ti) in high burn-up situations has been an important topic for molten metal-cooled Gen-IV reactors. The present study aims to investigate the simultaneous impact of liquid lead (coolant side) and cesium molybdate (fuel side) on the [...] Read more.
High temperature corrosion of fuel cladding material (15-15Ti) in high burn-up situations has been an important topic for molten metal-cooled Gen-IV reactors. The present study aims to investigate the simultaneous impact of liquid lead (coolant side) and cesium molybdate (fuel side) on the cladding tube material. A capsule was designed and built for experiments between 600 °C and 1000 °C. In order to simulate a cladding breach scenario, a notch design on the cladding tube was investigated pre- and postexposure. Material thinning by corrosion and leaching at temperatures ≥ 900 °C caused breaches at the notches after 168 h exposure. The temperature dependent cladding thinning phenomenon was used for kinetic interpretation. As the first of a two-part study, this paper will focus on the exposure capsule performance, including metallographic cross-section preparation and preliminary results on the interface chemistry. Full article
Show Figures

Graphical abstract

13 pages, 4364 KiB  
Technical Note
Burnup-Dependent Neutron Spectrum Behaviour of a Pressurised Water Reactor Fuel Assembly
by Bright Madinka Mweetwa and Marat Margulis
J. Nucl. Eng. 2024, 5(1), 44-56; https://doi.org/10.3390/jne5010004 - 29 Jan 2024
Viewed by 419
Abstract
Understanding the behaviour of a neutron spectrum with burnup is important for describing various phenomena associated with reactor operation. The quest to understand the neutron spectrum comes with a lot of questions. One question that is usually asked by students is: Does the [...] Read more.
Understanding the behaviour of a neutron spectrum with burnup is important for describing various phenomena associated with reactor operation. The quest to understand the neutron spectrum comes with a lot of questions. One question that is usually asked by students is: Does the neutron spectrum harden or soften with burnup? Most textbooks used by students do not provide a definite answer to this question. This paper seeks to answer this question using a 3D model of a standard 17 × 17 pressurised water reactor fuel assembly. Two cases were studied using the Serpent Monte Carlo code: the first considered the fuel assembly with constant boron concentration (traditionally found in many published papers), and the second considered boron iteration (where the boron concentration was reduced with burnup). Neutron spectra for the two cases at beginning of life and end of life were compared for spectral shifts. In addition, thermal spectral indices were used to assess spectrum hardening or softening with burnup. Spectral shifts to lower energies were observed in the thermal region of the neutron spectrum, whereas the fast region experienced no spectral shift. There was an increase in thermal spectral indices indicating that the spectrum became soft with burnup. Full article
Show Figures

Figure 1

18 pages, 6870 KiB  
Article
Gamma-ray Spectroscopy in Low-Power Nuclear Research Reactors
by Oskari V. Pakari, Andrew Lucas, Flynn B. Darby, Vincent P. Lamirand, Tessa Maurer, Matthew G. Bisbee, Lei R. Cao, Andreas Pautz and Sara A. Pozzi
J. Nucl. Eng. 2024, 5(1), 26-43; https://doi.org/10.3390/jne5010003 - 26 Jan 2024
Cited by 1 | Viewed by 1010
Abstract
Gamma-ray spectroscopy is an effective technique for radioactive material characterization, routine inventory verification, nuclear safeguards, health physics, and source search scenarios. Gamma-ray spectrometers typically cannot be operated in the immediate vicinity of nuclear reactors due to their high flux fields and their resulting [...] Read more.
Gamma-ray spectroscopy is an effective technique for radioactive material characterization, routine inventory verification, nuclear safeguards, health physics, and source search scenarios. Gamma-ray spectrometers typically cannot be operated in the immediate vicinity of nuclear reactors due to their high flux fields and their resulting inability to resolve individual pulses. Low-power reactor facilities offer the possibility to study reactor gamma-ray fields, a domain of experiments hitherto poorly explored. In this work, we present gamma-ray spectroscopy experiments performed with various detectors in two reactors: The EPFL zero-power research reactor CROCUS, and the neutron beam facility at the Ohio State University Research Reactor (OSURR). We employed inorganic scintillators (CeBr3), organic scintillators (trans-stilbene and organic glass), and high-purity germanium semiconductors (HPGe) to cover a range of typical—and new—instruments used in gamma-ray spectroscopy. The aim of this study is to provide a guideline for reactor users regarding detector performance, observed responses, and therefore available information in the reactor photon fields up to 2 MeV. The results indicate several future prospects, such as the online (at criticality) monitoring of fission products (like Xe, I, and La), dual-particle sensitive experiments, and code validation opportunities. Full article
Show Figures

Figure 1

13 pages, 4146 KiB  
Article
Effects of Neutron Flux Distribution and Control Rod Shadowing on Control Rod Calibrations in the Oregon State TRIGA® Reactor
by Tracey Spoerer, Robert Schickler and Steven Reese
J. Nucl. Eng. 2024, 5(1), 13-25; https://doi.org/10.3390/jne5010002 - 03 Jan 2024
Viewed by 574
Abstract
Control rod calibration experiment results for the Oregon State TRIGA® Reactor (OSTR) immediately following LEU conversion in 2008, and MCNP® 5 predicted rod worths from the 2008 LEU Conversion Safety Analysis Report (CSAR) are discussed. The reactivity worth of the four [...] Read more.
Control rod calibration experiment results for the Oregon State TRIGA® Reactor (OSTR) immediately following LEU conversion in 2008, and MCNP® 5 predicted rod worths from the 2008 LEU Conversion Safety Analysis Report (CSAR) are discussed. The reactivity worth of the four OSTR control rods is measured using the rod-pull method. Reactor power and period measurements in this method rely on the fission chamber power detector on the north side of the reflector. It is proposed that the location of the fission chamber and the neutron flux distribution in the core may result in an inaccurate reactor period measurement due to the asymmetry of the neutron flux distribution in the OSTR core. The asymmetry of the flux is believed to be more pronounced during super-criticality, resulting in errors in the time-of-power-rise measurements. As a result, control rod calibration experiments may under-predict or over-predict the reactivity worth of certain control rods. A time-independent Monte–Carlo method for the quantification of these effects is presented. Thermal flux maps at the core axial mid-plane are obtained from the model to inform discrepancies between predicted and observed results. Full article
Show Figures

Figure 1

12 pages, 4480 KiB  
Article
Research on the Influence of Negative KERMA Factors on the Power Distribution of a Lead-Cooled Fast Reactor
by Guanqun Jia, Xubo Ma, Teng Zhang and Kui Hu
J. Nucl. Eng. 2024, 5(1), 1-12; https://doi.org/10.3390/jne5010001 - 21 Dec 2023
Viewed by 565
Abstract
The accurate calculation of reactor core heating is vital for the design and safety analysis of reactor physics. However, negative KERMA factors may be produced when processing and evaluating libraries of the nuclear data files ENDF/B-VII.1 and ENDF/B-VIII.0 with the NJOY2016 code, and [...] Read more.
The accurate calculation of reactor core heating is vital for the design and safety analysis of reactor physics. However, negative KERMA factors may be produced when processing and evaluating libraries of the nuclear data files ENDF/B-VII.1 and ENDF/B-VIII.0 with the NJOY2016 code, and the continuous-energy neutron cross-section library ENDF71x with MCNP also has the same problem. Negative KERMA factors may lead to an unreasonable reactor heating rate. Therefore, it is important to investigate the influence of negative KERMA factors on the calculation of the heating rate. It was also found that negative KERMA factors can be avoided with the CENDL-3.2 library for some nuclides. Many negative KERMA nuclides are found for structural materials; there are many non-fuel regions in fast reactors, and these negative KERMA factors may have a more important impact on the power distribution in non-fuel regions. In this study, the impact of negative KERMA factors on power calculation was analyzed by using the RBEC-M benchmark and replacing the neutron cross-section library containing negative KERMA factors with one containing normal KERMA factors that were generated based on CENDL-3.2. For the RBEC-M benchmark, the deviation in the maximum neutron heating rate between the negative KERMA library and the normal library was 6.46%, and this appeared in the reflector region. In the core region, negative KERMA factors had little influence on the heating rate, and the deviations in the heating rate in most assemblies were within 1% because the heating was mainly caused by fission. However, in the reflector zone, where gamma heating was dominant, the total heating rate varied on account of the gamma heating rate. Therefore, negative KERMA factors for neutrons have little influence on the calculation of fast reactor heating according to the RBEC-M benchmark. Full article
(This article belongs to the Special Issue Monte Carlo Simulation in Reactor Physics)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop