Previous Issue
Volume 5, March
 
 

Automation, Volume 5, Issue 2 (June 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 2334 KiB  
Article
Vision-Based Object Manipulation for Activities of Daily Living Assistance Using Assistive Robot
by Md Tanzil Shahria, Jawhar Ghommam, Raouf Fareh and Mohammad Habibur Rahman
Automation 2024, 5(2), 68-89; https://doi.org/10.3390/automation5020006 - 15 Apr 2024
Viewed by 275
Abstract
The increasing prevalence of upper and lower extremity (ULE) functional deficiencies presents a significant challenge, as it restricts individuals’ ability to perform daily tasks independently. Robotic devices are emerging as assistive devices to assist individuals with limited ULE functionalities in activities of daily [...] Read more.
The increasing prevalence of upper and lower extremity (ULE) functional deficiencies presents a significant challenge, as it restricts individuals’ ability to perform daily tasks independently. Robotic devices are emerging as assistive devices to assist individuals with limited ULE functionalities in activities of daily living (ADLs). While assistive manipulators are available, manual control through traditional methods like joysticks can be cumbersome, particularly for individuals with severe hand impairments and vision limitations. Therefore, autonomous/semi-autonomous control of a robotic assistive device to perform any ADL task is open to research. This study addresses the necessity of fostering independence in ADLs by proposing a creative approach. We present a vision-based control system for a six-degrees-of-freedom (DoF) robotic manipulator designed for semi-autonomous “pick-and-place” tasks, one of the most common activities among ADLs. Our approach involves selecting and training a deep-learning-based object detection model with a dataset of 47 ADL objects, forming the base for a 3D ADL object localization algorithm. The proposed vision-based control system integrates this localization technique to identify and manipulate ADL objects (e.g., apples, oranges, capsicums, and cups) in real time, returning them to specific locations to complete the “pick-and-place” task. Experimental validation involving an xArm6 (six DoF) robot from UFACTORY in diverse settings demonstrates the system’s adaptability and effectiveness, achieving an overall 72.9% success rate in detecting, localizing, and executing ADL tasks. This research contributes to the growing field of autonomous assistive devices, enhancing independence for individuals with functional impairments. Full article
(This article belongs to the Collection Smart Robotics for Automation)
Show Figures

Figure 1

18 pages, 16454 KiB  
Article
Robotic Disassembly Platform for Disassembly of a Plug-In Hybrid Electric Vehicle Battery: A Case Study
by Mo Qu, D. T. Pham, Faraj Altumi, Adeyemisi Gbadebo, Natalia Hartono, Kaiwen Jiang, Mairi Kerin, Feiying Lan, Marcel Micheli, Shuihao Xu and Yongjing Wang
Automation 2024, 5(2), 50-67; https://doi.org/10.3390/automation5020005 - 01 Apr 2024
Viewed by 618
Abstract
Efficient processing of end-of-life lithium-ion batteries in electric vehicles is an important and pressing challenge in a circular economy. Regardless of whether the processing strategy is recycling, repurposing, or remanufacturing, the first processing step will usually involve disassembly. As battery disassembly is a [...] Read more.
Efficient processing of end-of-life lithium-ion batteries in electric vehicles is an important and pressing challenge in a circular economy. Regardless of whether the processing strategy is recycling, repurposing, or remanufacturing, the first processing step will usually involve disassembly. As battery disassembly is a dangerous task, efforts have been made to robotise it. In this paper, a robotic disassembly platform using four industrial robots is proposed to automate the non-destructive disassembly of a plug-in hybrid electric vehicle battery pack into modules. This work was conducted as a case study to demonstrate the concept of the autonomous disassembly of an electric vehicle battery pack. A two-step object localisation method based on visual information is used to overcome positional uncertainties from different sources and is validated by experiments. Also, the unscrewing system is highlighted, and its functions, such as handling untightened fasteners, loosening jammed screws, and changing the nutrunner adapters with square drives, are detailed. Furthermore, the time required for each operation is compared with that taken by human operators. Finally, the limitations of the platform are reported, and future research directions are suggested. Full article
(This article belongs to the Special Issue Smart Remanufacturing)
Show Figures

Figure 1

1 pages, 173 KiB  
Correction
Correction: Berceanu, C.; Pătrașcu, M. Engineering Emergence: A Survey on Control in the World of Complex Networks. Automation 2022, 3, 176–196
by Cristian Berceanu and Monica Pătrașcu
Automation 2024, 5(2), 49; https://doi.org/10.3390/automation5020004 - 26 Mar 2024
Viewed by 252
Abstract
In the original publication [...] Full article
Previous Issue
Back to TopTop