Next Issue
Volume 5, March
Previous Issue
Volume 4, September
 
 

Fuels, Volume 4, Issue 4 (December 2023) – 6 articles

Cover Story (view full-size image): We investigated the effects of blending dimethyl carbonate (DMC) and ethanol with commercial gasoline on combustion characteristics. To simulate knocking phenomena, we installed a rectangular channel in the combustion chamber of the RCEM and measured the pressure history inside the chamber. Blending both oxygenated fuels with gasoline effectively reduced the maximum-pressure amplitude in the end-gas autoignition, with ethanol exhibiting a more pronounced suppression effect compared to DMC in the same volumetric mixing ratio. However, the blending effect of DMC on combustion durations was greatly mitigated when the initial pressure was reduced to 0.05 MPa. Conversely, the combustion durations for ethanol/gasoline blends showed a nearly monotonic reduction with an increase in the ethanol blending ratio at both initial pressures of 0.10 and 0.05 MPa. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 3088 KiB  
Article
Mutants with Enhanced Multi-Stress Tolerance of Kluyveromyces marxianus and Their Ability for Ethanol Fermentation
by Noppon Lertwattanasakul, Sornsiri Pattanakittivorakul, Sukanya Nitiyon, Minenosuke Matsutani, Akihiro Oguchi, Katsushi Hirata, Tomoyuki Kosaka, Savitree Limtong and Mamoru Yamada
Fuels 2023, 4(4), 469-483; https://doi.org/10.3390/fuels4040029 - 30 Nov 2023
Cited by 1 | Viewed by 1064
Abstract
Kluyveromyces marxianus is an attractive thermotolerant yeast species for ethanol production because of its ability to utilize various carbon sources as a fermentation substrate. The use of thermotolerant microorganisms enables the performance of high-temperature ethanol fermentation, which has several advantages, including the reduction [...] Read more.
Kluyveromyces marxianus is an attractive thermotolerant yeast species for ethanol production because of its ability to utilize various carbon sources as a fermentation substrate. The use of thermotolerant microorganisms enables the performance of high-temperature ethanol fermentation, which has several advantages, including the reduction of cooling costs and minimization of contamination risks. To improve K. marxianus for ethanol fermentation under stress conditions, two strains, DMKU 3-1042 and DMKU 3-118, were adapted for heat resistance and resistance to toxic substances in pulp wastewater from a paper mill, respectively, resulting in the generation of KMR1042 and KMR118, respectively. Both adapted mutants exhibited clumpy clusters of cells as pseudo-hyphae and altered colony morphology, and their sedimentation speeds were much faster than those of the corresponding parent strains. The two mutants showed stronger tolerance to various stresses and higher performance for ethanol production than those of the corresponding parent strains at high temperatures or in the presence of toxic substances. Genome sequencing analysis revealed that both mutants had disruption of the same gene, SWI5, despite adaptation under different stress conditions, suggesting that the formation of pseudo-hyphae is a common strategy of K. marxianus for coping with stresses. Full article
(This article belongs to the Special Issue Biomass Conversion to Biofuels)
Show Figures

Figure 1

15 pages, 6578 KiB  
Article
Industrial Rotary Kiln Burner Performance with 3D CFD Modeling
by Duarte M. Cecílio, Margarida Mateus and Ana Isabel Ferreiro
Fuels 2023, 4(4), 454-468; https://doi.org/10.3390/fuels4040028 - 02 Nov 2023
Cited by 1 | Viewed by 1327
Abstract
As the need to minimize environmental impacts continues to rise, it is essential to incorporate, advance, and adopt renewable energy sources and materials to attain climate neutrality in industrial operations. It is established that economic growth is built upon infrastructure, where the cement [...] Read more.
As the need to minimize environmental impacts continues to rise, it is essential to incorporate, advance, and adopt renewable energy sources and materials to attain climate neutrality in industrial operations. It is established that economic growth is built upon infrastructure, where the cement industry plays a crucial role. However, it is also known that this industry is actively looking for ways to transition toward low-carbon practices to encourage sustainable and environmentally conscious practices. To this end, the use of refuse-derived fuels to substitute fossil fuels is very appealing, as these have the potential to lower clinker production costs and CO2 emissions. Bearing this in mind, the primary objective of this work is to gain insights into the combustion behavior in an industrial rotary kiln by studying real-life scenarios and to assess the potential of substituting alternative fuels for fossil fuels to reduce CO2 emissions. A 3D CFD turbulent combustion model was formulated in Ansys® considering a Pillard NOVAFLAM® burner, where refuse-derived and petcoke fuels were used, and different secondary air mass flows were considered. From the obtained results, it was possible to conclude that the outcome of the combustion process is greatly influenced by the fuel-to-air ratio. Increasing the secondary air mass flow promotes the occurrence of a complete and efficient combustion process, leading to enhanced fuel conversion and the decreased formation of pollutants such as CO, soot, and unburned hydrocarbons. An increase in combustion efficiency from 93% to 96% was observed, coupled with a slight decrease in the pollutant mass fraction in the flue gas. Full article
Show Figures

Figure 1

13 pages, 2163 KiB  
Article
Effect of Blending Dimethyl Carbonate and Ethanol with Gasoline on Combustion Characteristics
by Shunsuke Suzuki, Eiichi Takahashi, Mitsuharu Oguma and Kazuhiro Akihama
Fuels 2023, 4(4), 441-453; https://doi.org/10.3390/fuels4040027 - 26 Oct 2023
Viewed by 1052
Abstract
We investigated the effects of blending dimethyl carbonate (DMC) and ethanol with commercial gasoline on combustion characteristics. Our experimental approach involved using a rapid compression and expansion machine (RCEM) to achieve elevated temperatures and pressures. The fuels containing different volumes of oxygenated hydrocarbons [...] Read more.
We investigated the effects of blending dimethyl carbonate (DMC) and ethanol with commercial gasoline on combustion characteristics. Our experimental approach involved using a rapid compression and expansion machine (RCEM) to achieve elevated temperatures and pressures. The fuels containing different volumes of oxygenated hydrocarbons were burned at equivalence ratios of 1.0 or 0.7, an initial temperature of 340 K, and initial pressures of 0.10 or 0.05 MPa. To simulate knocking phenomena, we installed a rectangular channel in the combustion chamber of the RCEM and measured the pressure history inside the chamber. By analyzing the pressure history resulting from the end-gas autoignition, we evaluated the combustion duration and maximum pressure amplitude. Blending both oxygenated fuels with gasoline effectively reduced the maximum-pressure amplitude in the end-gas autoignition, with ethanol exhibiting a more pronounced suppression effect compared to DMC in the same volumetric mixing ratio. At an initial pressure of 0.10 MPa, the combustion durations of DMC/gasoline blends showed non-linear behavior, being shorter than those of pure gasoline and DMC and comparable to those of the ethanol/gasoline blends. However, the blending effect of DMC on combustion durations was greatly mitigated when the initial pressure was reduced to 0.05 MPa. Conversely, the combustion durations for ethanol/gasoline blends showed a nearly monotonic reduction with an increase in the ethanol blending ratio at both initial pressures of 0.10 and 0.05 MPa. Finally, we discussed the differential impact of the blending effect of oxygenated hydrocarbons on combustion characteristics. Full article
(This article belongs to the Special Issue Advances in Synthetic Fuel)
Show Figures

Figure 1

24 pages, 6640 KiB  
Article
Investigating the Impact of Undulation Amplitude of Unconventional Oil Well Laterals on Transient Multiphase Flow Behavior: Experimental and Numerical Study
by Youcef Khetib, Kegang Ling, Clement Tang, Ala Eddine Aoun, Adesina Samson Fadairo and Habib Ouadi
Fuels 2023, 4(4), 417-440; https://doi.org/10.3390/fuels4040026 - 24 Oct 2023
Cited by 1 | Viewed by 865
Abstract
The growing popularity of unconventional wells has led to increased interest in assessing and predicting their production performance. These wells, with their extended-reach structures, are able to generate and access larger reservoir volumes. Therefore, understanding the impact of a well’s lateral trajectory on [...] Read more.
The growing popularity of unconventional wells has led to increased interest in assessing and predicting their production performance. These wells, with their extended-reach structures, are able to generate and access larger reservoir volumes. Therefore, understanding the impact of a well’s lateral trajectory on its transient production performance is crucial. This study investigates the effect of lateral-trajectory undulation amplitude on flow behavior based on the experimental results obtained at the University of North Dakota using an undulated two-phase (UTP) flow loop. The experiments involved injecting an air-and-water mixture through a section with variable undulation amplitude followed by a vertical section. The results revealed that the increasing undulation amplitude resulted in lower translational velocity, frequency, and length, with consistent slug acceleration along the system profile. Additionally, the frequency of slugs decreased as they traveled through the vertical section. The measured data indicated that higher undulation amplitudes led to increased horizontal pressure losses and variability, suggesting larger instabilities. The numerical simulations predicted lower translational velocity and frequency, longer slug length, and similar vertical pressure losses when compared to the experimental results. Full article
Show Figures

Graphical abstract

20 pages, 2477 KiB  
Article
Stress-Dependent Petrophysical Properties of the Bakken Unconventional Petroleum System: Insights from Elastic Wave Velocities and Permeability Measurements
by Prasad Pothana, Ghoulem Ifrene and Kegang Ling
Fuels 2023, 4(4), 397-416; https://doi.org/10.3390/fuels4040025 - 30 Sep 2023
Viewed by 1074
Abstract
The net-effective stress is a fundamental physical property that undergoes dynamic changes in response to variations in pore pressure during production and injection activities. Petrophysical properties, including porosity, permeability, and wave velocities, play a critical role and exhibit strong dependence on the mechanical [...] Read more.
The net-effective stress is a fundamental physical property that undergoes dynamic changes in response to variations in pore pressure during production and injection activities. Petrophysical properties, including porosity, permeability, and wave velocities, play a critical role and exhibit strong dependence on the mechanical stress state of the formation. The Williston basin’s Bakken Formation represents a significant reservoir of hydrocarbons within the United States. To investigate this formation, we extracted core plugs from three distinct Bakken members, namely Upper Bakken, Middle Bakken, and Lower Bakken. Subsequently, we conducted a series of measurements of ultrasonic compressional and shear wave velocities, as well as pulse decay permeabilities using nitrogen, under various confining pressures employing the Autolab-1500 apparatus. Our experimental observations revealed that the ultrasonic wave velocities and permeability display a significant sensitivity to stress changes. We investigated existing empirical relationships on velocity-effective stress, compressional-shear wave velocities, and permeability-effective stress, and proposed the best models and associated fitting parameters applicable to the current datasets. In conjunction with the acquired datasets, these models have considerable potential for use in time-lapse seismic monitoring and the study of production decline behavior. The best fitting models can be used to forecast the petrophysical and geomechanical property changes as the reservoir pore pressure is depleted due to the production, which is critical to the production forecast for unconventional reservoirs. Full article
Show Figures

Figure 1

21 pages, 5898 KiB  
Review
A Comprehensive Review of Fishbone Well Applications in Conventional and Renewable Energy Systems in the Path towards Net Zero
by Uchenna Frank Ndulue, Olusegun Stanley Tomomewo and Houdaifa Khalifa
Fuels 2023, 4(4), 376-396; https://doi.org/10.3390/fuels4040024 - 25 Sep 2023
Viewed by 1686
Abstract
Fishbone drilling (FbD) involves drilling multiple micro-holes branching out in various directions from the primary vertical or deviated wellbore. FbD is similar to multilateral micro-hole drilling and can be employed to boost hydrocarbon production in naturally fractured formations or during refracturing operations by [...] Read more.
Fishbone drilling (FbD) involves drilling multiple micro-holes branching out in various directions from the primary vertical or deviated wellbore. FbD is similar to multilateral micro-hole drilling and can be employed to boost hydrocarbon production in naturally fractured formations or during refracturing operations by connecting existing natural fractures. Key design elements in fishbones include determining the number, length, and spacing between the branches, and the angle at which the branches deviate from the main borehole. Fishbone wells have emerged as a promising technology for improving well performance and reducing environmental impact. In this paper, we present a comprehensive review of the different applications of fishbone wells in conventional and renewable energy systems. We discuss the potential of fishbone wells for enhanced oil and gas recovery, as well as their application in unconventional resources such as coal bed methane. Moreover, we examine the feasibility of fishbone wells in renewable energy systems, such as geothermal energy and carbon capture, utilization, and storage (CCUS). We highlight the various benefits of fishbone wells, including reduced carbon footprint, enhanced efficiency, and increased sustainability. Finally, we discuss the challenges and limitations associated with fishbone wells in different energy systems. This review provides a comprehensive overview of the potential and challenges of fishbone wells in reducing carbon footprint and improving well performance in a wide range of energy systems. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop