Previous Issue
Volume 5, March
 
 

Corros. Mater. Degrad., Volume 5, Issue 2 (June 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 6932 KiB  
Article
In-Situ AFM Studies of Surfactant Adsorption on Stainless Steel Surfaces during Electrochemical Polarization
by Julian Cremer, Sinan Kiremit, Heinz Jürgen Klarhorst, Alix Gaspard, Karsten Rasim, Thomas Kordisch, Andreas Hütten and Dario Anselmetti
Corros. Mater. Degrad. 2024, 5(2), 224-240; https://doi.org/10.3390/cmd5020009 - 07 Apr 2024
Viewed by 485
Abstract
Corrosion inhibitors are one of the best practices to prevent the far-reaching negative impacts of corrosion on ferrous alloys. A thorough understanding of their corrosion-inhibiting effects is essential for a sustainable economy and environment. Anionic surfactants are known to act efficiently as corrosion [...] Read more.
Corrosion inhibitors are one of the best practices to prevent the far-reaching negative impacts of corrosion on ferrous alloys. A thorough understanding of their corrosion-inhibiting effects is essential for a sustainable economy and environment. Anionic surfactants are known to act efficiently as corrosion inhibitors. Here, we present that in-situ atomic force microscopy (AFM) measurements can provide deep insights into the adsorption and inhibition mechanism of surfactants on stainless steel surfaces during local corrosion. These include the configuration of surfactant molecules on the surface and how the microstructure of the stainless steel surface influences the inhibition process. Three different anionic surfactants, namely palm kernel oil (PKO), linear alkylbenzene sulfonate (LAS), and fatty alcohol ether sulfate (FAES), were investigated on a titanium-stabilized ferritic stainless steel (1.4510) in NaCl solution. For PKO, the results show random adsorption of bi- and multilayer whereas LAS and FAES adsorb only as local corrosion occurs. Thereby, LAS accumulates only locally and especially at the titanium precipitates of the 1.4510 and FAES forms a densely packed monolayer on the surface. This leads to better corrosion inhibiting properties for LAS and FAES compared to PKO. Full article
Show Figures

Graphical abstract

24 pages, 8467 KiB  
Article
Dissociative Adsorption of Hydrogen Molecules at Al2O3 Inclusions in Steels and Its Implications for Gaseous Hydrogen Embrittlement of Pipelines
by Yinghao Sun and Frank Cheng
Corros. Mater. Degrad. 2024, 5(2), 200-223; https://doi.org/10.3390/cmd5020008 - 02 Apr 2024
Viewed by 489
Abstract
Hydrogen embrittlement (HE) of steel pipelines in high-pressure gaseous environments is a potential threat to the pipeline integrity. The occurrence of gaseous HE is subjected to associative adsorption of hydrogen molecules (H2) at specific “active sites”, such as grain boundaries and [...] Read more.
Hydrogen embrittlement (HE) of steel pipelines in high-pressure gaseous environments is a potential threat to the pipeline integrity. The occurrence of gaseous HE is subjected to associative adsorption of hydrogen molecules (H2) at specific “active sites”, such as grain boundaries and dislocations on the steel surface, to generate hydrogen atoms (H). Non-metallic inclusions are another type of metallurgical defect potentially serving as “active sites” to cause the dissociative adsorption of H2. Al2O3 is a common inclusion contained in pipeline steels. In this work, the dissociative adsorption of hydrogen at the α-Al2O3(0001)/α-Fe(111) interface on the Fe011¯ plane was studied by density functional theory calculations. The impact of gas components of O2 and CH4 on the dissociative adsorption of hydrogen was determined. The occurrence of dissociative adsorption of hydrogen at the Al2O3 inclusion/Fe interface is favored under conditions relevant to pipeline operation. Thermodynamic feasibility was observed for Fe and O atoms, but not for Al atoms. H atoms can form more stable adsorption configurations on the Fe side of the interface, while it is less likely for H atoms to adsorb on the Al2O3 side. There is a greater tendency for the occurrence of dissociative adsorption of O2 and CH4 than of H2, due to the more favorable energetics of the former. In particular, the dissociative adsorption of O2 is preferential over that of CH4. The Al-terminated interface exhibits a higher H binding energy compared to the O-terminated interface, indicating a preference for hydrogen accumulation at the Al-terminated interface. Full article
Show Figures

Figure 1

76 pages, 5357 KiB  
Review
Review of the Modelling of Corrosion Processes and Lifetime Prediction for HLW/SF Containers—Part 1: Process Models
by Fraser King, Miroslav Kolàř, Scott Briggs, Mehran Behazin, Peter Keech and Nikitas Diomidis
Corros. Mater. Degrad. 2024, 5(2), 124-199; https://doi.org/10.3390/cmd5020007 - 28 Mar 2024
Viewed by 701
Abstract
The disposal of high-level radioactive waste (HLW) and spent nuclear fuel (SF) presents a unique challenge for the prediction of the long-term performance of corrodible structures since HLW/SF containers are expected, in some cases, to have lifetimes of one million years or longer. [...] Read more.
The disposal of high-level radioactive waste (HLW) and spent nuclear fuel (SF) presents a unique challenge for the prediction of the long-term performance of corrodible structures since HLW/SF containers are expected, in some cases, to have lifetimes of one million years or longer. Various empirical and deterministic models have been developed over the past 45 years for making predictions of long-term corrosion behaviour, including models for uniform and localised corrosion, environmentally assisted cracking, microbiologically influenced corrosion, and radiation-induced corrosion. More recently, fracture-mechanics-based approaches have been developed to account for joint mechanical–corrosion degradation modes. Regardless of whether empirical or deterministic models are used, it is essential to be able to demonstrate a thorough mechanistic understanding of the corrosion processes involved. In addition to process models focused on specific corrosion mechanisms, there is also a need for performance-assessment models as part of the overall demonstration of the safety of a deep geological repository. Performance-assessment models are discussed in Part 2 of this review. Full article
(This article belongs to the Special Issue Mechanism and Predictive/Deterministic Aspects of Corrosion)
Show Figures

Figure 1

Previous Issue
Back to TopTop