Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
66 pages, 14990 KiB  
Review
A Critical Review of Radiolysis Issues in Water-Cooled Fission and Fusion Reactors: Part I, Assessment of Radiolysis Models
by Digby D. Macdonald, George R. Engelhardt and Andrei Petrov
Corros. Mater. Degrad. 2022, 3(3), 470-535; https://doi.org/10.3390/cmd3030028 - 31 Aug 2022
Cited by 6 | Viewed by 3149
Abstract
A critical review is presented on modeling of the radiolysis of the coolant water in nuclear power reactors with emphasis on ITER. The review is presented in two parts: In Part I, we assess previous work in terms of compliance with important chemical [...] Read more.
A critical review is presented on modeling of the radiolysis of the coolant water in nuclear power reactors with emphasis on ITER. The review is presented in two parts: In Part I, we assess previous work in terms of compliance with important chemical principles and conclude that no model proposed to date is completely satisfactory, in this regard. Thus, some reactions that have been proposed in various radiolysis models are not elementary in nature and can be decomposed into two or more elementary reactions, some of which are already included in the models. These reactions must be removed in formulating a viable model. Furthermore, elementary reactions between species of like charge are also commonly included, but they can be discounted upon the basis of Coulombic repulsion under the prevailing conditions (T < 350 °C) and must also be removed. Likewise, it is concluded that the current state of knowledge with respect to radiolytic yields (i.e., G-values) is also unsatisfactory. More work is required to ensure that the yields used in radiolysis models are truly “primary” yields corresponding to a time scale of nanoseconds or less. This is necessary to ensure that the impact of the reactions that occur outside of the spurs (ionizing particle tracks in the medium) are not counted twice. In Part II, the authors review the use of the radiolysis models coupled with electrochemical models to predict the water chemistry, corrosion potential, crack growth rate in Type 304 SS, and accumulated damage in the coolant circuits of boiling water reactors, pressurized water reactors, and the test fusion reactor, ITER. Based on experience with fission reactors, the emphasis should be placed on the control of the electrochemical corrosion potential because it is the parameter that best describes the state of corrosion in coolant circuits. Full article
Show Figures

Figure 1

15 pages, 3507 KiB  
Article
Cathodic Protection of Complex Carbon Steel Structures in Seawater
by Philippe Refait, Anne-Marie Grolleau, Marc Jeannin and René Sabot
Corros. Mater. Degrad. 2022, 3(3), 439-453; https://doi.org/10.3390/cmd3030026 - 12 Aug 2022
Cited by 2 | Viewed by 2389
Abstract
Cathodic protection efficiency of complex carbon steel structures in confined seawater environment was studied using a specific experimental device. Schematically, this device consisted of a Plexiglas matrix, crossed by a channel 50 cm long, 5 mm deep, 1.5 to 5 cm wide, which [...] Read more.
Cathodic protection efficiency of complex carbon steel structures in confined seawater environment was studied using a specific experimental device. Schematically, this device consisted of a Plexiglas matrix, crossed by a channel 50 cm long, 5 mm deep, 1.5 to 5 cm wide, which moreover included four bends at 90°. Seawater flowed continuously inside the channel over 12 steel coupons embedded in the Plexiglas matrix. Cathodic protection was applied at a constant potential of −1060 mV vs. Ag/AgCl-seawater with respect to a reference electrode located outside the channel, at the seawater flow entry. The potential of four selected coupons was monitored over time via a microelectrode set close to each coupon. It varied significantly with the distance separating the coupons from the channel entry. At the end of the 3.5-month experiment, a polarization curve was acquired. The residual corrosion rate under cathodic protection was estimated via the extrapolation of the anodic Tafel line. It varied from <1 µm yr−1 to 16 µm yr−1, depending on the potential reached by the coupon (between −900 and −1040 mV vs. Ag/AgCl-seawater) at the end of the experiment and on the properties of the calcareous deposit formed on the steel surface. Full article
Show Figures

Figure 1

17 pages, 4543 KiB  
Article
Green-High-Performance PMMA–Silica–Li Barrier Coatings
by Andressa Trentin, Victória Hellen Chagas, Mayara Carla Uvida, Sandra Helena Pulcinelli, Celso Valentim Santilli and Peter Hammer
Corros. Mater. Degrad. 2022, 3(3), 303-319; https://doi.org/10.3390/cmd3030018 - 24 Jun 2022
Cited by 2 | Viewed by 2052
Abstract
Organic-inorganic coatings based on polymethyl methacrylate (PMMA)–silica–lithium are an efficient alternative to protect metals against corrosion. Although the preparation methodology is established and the thin coatings (~10 µm) are highly protective, the use of an environmentally friendly solvent has not yet been addressed. [...] Read more.
Organic-inorganic coatings based on polymethyl methacrylate (PMMA)–silica–lithium are an efficient alternative to protect metals against corrosion. Although the preparation methodology is established and the thin coatings (~10 µm) are highly protective, the use of an environmentally friendly solvent has not yet been addressed. In this work, PMMA–silica coatings were synthesized using 2-propanol as a solvent and deposited on aluminum alloy AA7075, widely used in the aeronautical industry. Different concentrations of lithium carbonate (0–4000 ppm) were incorporated into the hybrid matrix to study the structural and inhibitive effects of Li+ in terms of barrier efficiency of the coatings in contact with saline solution (3.5% NaCl). Structural and morphological characterization by low-angle X-ray scattering, X-ray photoelectron spectroscopy, atomic force microscopy, thermogravimetric analysis, thickness, and adhesion measurements, showed for intermediate lithium content (500–2000 ppm) the formation of a highly polymerized PMMA phase covalently cross-linked by silica nodes, which provide strong adhesion to the aluminum substrate (15 MPa). Electrochemical impedance spectroscopy (EIS) results revealed an excellent barrier property in the GΩ cm2 range and durability of more than two years in a 3.5% NaCl solution. This performance can be attributed to the formation of a highly reticulated phase in the presence of Li, which hinders the permeation of water and ions. Additionally, the self-healing ability of scratched samples was evidenced by EIS assays showing a fast Li-induced formation of insoluble products in damaged areas; thus, constituting an excellent eco-friendly solution for corrosion protection of aerospace components. Full article
(This article belongs to the Special Issue Corrosion Barrier Coatings)
Show Figures

Graphical abstract

21 pages, 1968 KiB  
Review
Review of Residual Stress Impingement Methods to Mitigate Environmental Fracture Susceptibility
by Matthew E. McMahon
Corros. Mater. Degrad. 2021, 2(4), 582-602; https://doi.org/10.3390/cmd2040031 - 20 Oct 2021
Cited by 3 | Viewed by 2873
Abstract
Environmental cracking- and fatigue-related failures threaten all major industries and, to combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. Some of the most commonly used RSI methods, such as shot [...] Read more.
Environmental cracking- and fatigue-related failures threaten all major industries and, to combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. Some of the most commonly used RSI methods, such as shot peening, laser shock peening, and low plasticity burnishing, as well as new methods, such as ultrasonic nanocrystal surface modification, are reviewed in the context of corrosion, corrosion fatigue, and environmental cracking mitigation. The successes and limitations of these treatments are discussed, with a focus on their efficacy against these three damage modes based on the available literature. Case studies are reviewed that demonstrate how these treatments have been adopted and advanced by industry, and application-specific research efforts are explored with a focus on future opportunities. Research is identified that illustrates how the utility of these surface treatments may vary between alloy systems, and where the benefits must be weighed against the risks to a component’s service performance. Full article
Show Figures

Figure 1

19 pages, 7581 KiB  
Review
Management of Airframe In-Service Pitting Corrosion by Decoupling Fatigue and Environment
by Loris Molent and Russell Wanhill
Corros. Mater. Degrad. 2021, 2(3), 493-511; https://doi.org/10.3390/cmd2030026 - 31 Aug 2021
Cited by 3 | Viewed by 3786
Abstract
Corrosion-induced maintenance is a significant cost driver and availability degrader for aircraft structures. Although well-established analyses enable assessing the corrosion impact on structural integrity, this is not the case for fatigue nucleation and crack growth. This forces fleet managers to directly address detected [...] Read more.
Corrosion-induced maintenance is a significant cost driver and availability degrader for aircraft structures. Although well-established analyses enable assessing the corrosion impact on structural integrity, this is not the case for fatigue nucleation and crack growth. This forces fleet managers to directly address detected corrosion to maintain flight safety. Corrosion damage occurs despite protection systems, which inevitably degrade. In particular, pitting corrosion is a common potential source of fatigue. Corrosion pits are discontinuities whose metrics can be used to predict the impact on the fatigue lives of structural components. However, a damage tolerance (DT) approach would be more useful and flexible. A potential hindrance to DT has been the assumption that corrosion-induced fatigue nucleation transitions to corrosion fatigue, about which little is known for service environments. Fortunately, several sources indicate that corrosion fatigue is rare for aircraft, and corrosion is largely confined to ground situations because aircraft generally fly at altitudes with low temperature and humidity Thus, it is reasonable to propose the decoupling of corrosion from the in-flight dynamic (fatigue) loading. This paper presents information to support this proposition, and provides an example of how a DT approach can allow deferring corrosion maintenance to a more opportune time. Full article
Show Figures

Figure 1

13 pages, 4896 KiB  
Article
Corrosion of Aluminium and Zinc in Concrete at Simulated Conditions of the Repository of Low Active Waste in Sweden
by Gunilla Herting and Inger Odnevall
Corros. Mater. Degrad. 2021, 2(2), 150-162; https://doi.org/10.3390/cmd2020009 - 18 Apr 2021
Cited by 5 | Viewed by 3527
Abstract
The corrosion performance of Aluminium (Al) and zinc (Zn) is of interest in repositories for radioactive waste as the production of hydrogen gas during their anoxic corrosion may create open pathways for the transport of radioactive ions. Al and Zn rods were embedded [...] Read more.
The corrosion performance of Aluminium (Al) and zinc (Zn) is of interest in repositories for radioactive waste as the production of hydrogen gas during their anoxic corrosion may create open pathways for the transport of radioactive ions. Al and Zn rods were embedded in concrete cylinders and immersed in artificial groundwater at anaerobic conditions for 2 weeks and up to 2 years in laboratory conditions. Corrosion rates were determined to enable predictions and estimations of risks for gas evolution and the assessment of the potential impact of corrosion on the structural integrity of concrete in the final repository of low and intermediate level metal-containing waste from dismantled nuclear power plants. Samples were collected after 2, 4, 12, 26, 52 and 104 weeks. The observed corrosion rates were higher for Al compared with Zn, as expected, but both materials revealed comparatively high initial corrosion rates that decreased with time, reaching steady state after 26–52 weeks. Some of the Al containing concrete cylinders were cracked as a result of the corrosion processes after 2 years of exposure, thereby providing free passage between the embedded metal and the surrounding environment. No such effects were observed for Zn. Comparative studies were performed on non-concrete-embedded Al and Zn immersed in artificial groundwater. Observed long-term corrosion rates (1–2 years) were similar to corresponding corrosion rates in concrete. The results indicate that immersion studies in artificial groundwater can be used to estimate the long-term corrosion performance of Zn and Al in concrete. Full article
Show Figures

Figure 1

17 pages, 3304 KiB  
Article
Probabilistic Corrosion Initiation Model for Coastal Concrete Structures
by Changkyu Kim, Do-Eun Choe, Pedro Castro-Borges and Homero Castaneda
Corros. Mater. Degrad. 2020, 1(3), 328-344; https://doi.org/10.3390/cmd1030016 - 16 Oct 2020
Cited by 10 | Viewed by 3127
Abstract
Corrosion of the reinforced concrete (RC) structures has been affecting the major infrastructures in U.S. and in other continents, causing the recent several bridge collapses and incidents. While the theoretical understanding is well-established, the reliable prediction of the corrosion process in the RC [...] Read more.
Corrosion of the reinforced concrete (RC) structures has been affecting the major infrastructures in U.S. and in other continents, causing the recent several bridge collapses and incidents. While the theoretical understanding is well-established, the reliable prediction of the corrosion process in the RC structural systems has hardly been successful due to the inherent uncertainties existed in the electrochemical corrosion process and the associated material and environmental conditions. The paper proposes a computational framework to develop evidence-based probabilistic corrosion initiation models for the reinforcing steels in the RC structures, which predicts the corrosion initiation time and quantifies the inherent variances considering various acting parameters. The framework includes: probabilistic modeling with Bayesian updating based on the sets of previously generated experimental data; Bayesian model/parameter selection considering various parameters, such as material properties and environmental conditions; corrosion reliability analyses to predict the probabilities of the corrosion initiation at given time t, structural configurations, and environmental conditions; and sensitivity analyses to measure and to rank the influences of each acting parameter and its uncertainty to the probabilities of the corrosion initiation. Total of 284 sets of experimental data exposed to the coastal atmospheric environments are used for the modeling. The goal of the Bayesian model selection presented in this paper is to obtain the most accurate and unbiased model using the simplest form of expression. The developed example corrosion model is currently limited to the initiation of diffusion-induced corrosion. The model can be updated, improved, or modified upon future available sets of data. The research contributes to the decision making to improve the corrosion reliability, corrosion control, and further the structural reliability of corroding structures. Full article
Show Figures

Figure 1

21 pages, 3689 KiB  
Review
Corrosion of Carbon Steel in Marine Environments: Role of the Corrosion Product Layer
by Philippe Refait, Anne-Marie Grolleau, Marc Jeannin, Celine Rémazeilles and René Sabot
Corros. Mater. Degrad. 2020, 1(1), 198-218; https://doi.org/10.3390/cmd1010010 - 03 Jun 2020
Cited by 75 | Viewed by 8553
Abstract
This article presents a synthesis of recent studies focused on the corrosion product layers forming on carbon steel in natural seawater and the link between the composition of these layers and the corrosion mechanisms. Additional new experimental results are also presented to enlighten [...] Read more.
This article presents a synthesis of recent studies focused on the corrosion product layers forming on carbon steel in natural seawater and the link between the composition of these layers and the corrosion mechanisms. Additional new experimental results are also presented to enlighten some important points. First, the composition and stratification of the layers produced by uniform corrosion are described. A focus is made on the mechanism of formation of the sulfate green rust because this compound is the first solid phase to precipitate from the dissolved species produced by the corrosion of the steel surface. Secondly, localized corrosion processes are discussed. In any case, they involve galvanic couplings between anodic and cathodic zones of the metal surface and are often associated with heterogeneous corrosion product layers. The variations of the composition of these layers with the anodic/cathodic character of the underlying metal surface, and in particular the changes in magnetite content, are thoroughly described and analyzed to enlighten the self-sustaining ability of the process. Finally, corrosion product layers formed on permanently immersed steel surfaces were exposed to air. Their drying and oxidation induced the formation of akaganeite, a common product of marine atmospheric corrosion that was, however, not detected on the steel surface after the permanent immersion period. Full article
Show Figures

Figure 1

Back to TopTop