# A Monte Carlo Approach to Bitcoin Price Prediction with Fractional Ornstein–Uhlenbeck Lévy Process

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

- The process is likely to reverse the trend over the time frame considered.
- The process is random in which knowing one data point does not provide insight into predicting future data points.
- The process is persistent in the sense that a future data point is likely to be similar to a data point preceding it.

#### 2.1. Fractional Brownian Motion

#### 2.2. Lévy Process

#### 2.2.1. Infinitely Divisible Distributions

#### 2.2.2. Continuous-Time Stochastic Processes

- The random variables ${L}_{{t}_{0}},{L}_{{t}_{1}}-{L}_{{t}_{0}},\cdots ,{L}_{{t}_{n}}-{L}_{{t}_{n-1}}$ are independent for all $n\ge 1$ and $0\le {t}_{0}<{t}_{1}<\cdots <{t}_{n}$ (independent increments);
- ${L}_{t+s}-{L}_{t}$ has the same distribution as ${L}_{s}$ for all $s,t\ge 0$ (stationary increments);
- L is stochastically continuous; that is, for all $t\ge 0$ and $a>0$.$$\underset{s\to t}{lim}\mathbb{P}\left[\right|{L}_{s}-{L}_{t}|>a]=0.$$
- The paths $t\mapsto {L}_{t}$ are right-continuous with left limits (cadlag-continue á droite et limite á gauche).

#### 2.2.3. Normal Inverse Gaussian

- iv) $P({N}_{t}=k)={\displaystyle \frac{{\left(\lambda t\right)}^{k}}{k!}}exp(-\lambda t),\phantom{\rule{0.277778em}{0ex}}k\ge 0,\phantom{\rule{0.277778em}{0ex}}t\ge 0$ (Poisson distribution).

#### 2.3. Fractional Ornstein–Uhlenbeck Lévy Process

## 3. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Nakamoto, S. Re: Bitcoin P2P e-cash paper. Email Posted List.
**2008**, 9, 4. [Google Scholar] - Yermack, D. Is Bitcoin a real currency? An economic appraisal. In Handbook of Digital Currency; Elsevier: Amsterdam, The Netherlands, 2015; pp. 31–43. [Google Scholar]
- Yermack, D. Corporate governance and blockchains. Rev. Financ.
**2017**, 21, 7–31. [Google Scholar] [CrossRef][Green Version] - Dwyer, G.P. The economics of Bitcoin and similar private digital currencies. J. Financ. Stab.
**2015**, 17, 81–91. [Google Scholar] [CrossRef][Green Version] - Ken-Iti, S. Lévy Processes and Infinitely Divisible Distributions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Cont, R.; Tankov, P. Nonparametric calibration of jump-diffusion option pricing models. J. Comput. Financ.
**2004**, 7, 1–49. [Google Scholar] [CrossRef][Green Version] - Katsiampa, P. Volatility estimation for Bitcoin: A comparison of GARCH models. Econ. Lett.
**2017**, 158, 3–6. [Google Scholar] [CrossRef][Green Version] - Cheah, E.T.; Fry, J. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Econ. Lett.
**2015**, 130, 32–36. [Google Scholar] [CrossRef][Green Version] - Scaillet, O.; Treccani, A.; Trevisan, C. High-frequency jump analysis of the bitcoin market. J. Financ. Econom.
**2020**, 18, 209–232. [Google Scholar] - Hencic, A.; Gouriéroux, C. Noncausal autoregressive model in application to bitcoin/USD exchange rates. In Econometrics of Risk; Springer: Cham, Switzerland, 2015; pp. 17–40. [Google Scholar]
- Tarnopolski, M. Modeling the price of Bitcoin with geometric fractional Brownian motion: A Monte Carlo approach. arXiv
**2017**, arXiv:1707.03746. [Google Scholar] - McNally, S. Predicting the Price of Bitcoin Using Machine Learning. Ph.D. Thesis, National College of Ireland, Dublin, Ireland, 2016. [Google Scholar]
- McNally, S.; Roche, J.; Caton, S. Predicting the price of Bitcoin using Machine Learning. In Proceedings of the 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), Cambridge, UK, 21–23 March 2018; pp. 339–343. [Google Scholar]
- Jalali, M.F.M.; Heidari, H. Predicting changes in Bitcoin price using grey system theory. Financ. Innov.
**2020**, 6, 13. [Google Scholar] - Gatabazi, P.; Mba, J.C.; Pindza, E.; Labuschagne, C. Grey Lotka- Volterra models with application to cryptocurrencies adoption. Chaos Solitons Fractals
**2019**, 122, 47–57. [Google Scholar] [CrossRef] - Gatabazi, P.; Mba, J.C.; Pindza, E. Modeling cryptocurrencies transaction counts using variable-order Fractional Grey Lotka-Volterra dynamical system. Chaos Solitons Fractals
**2019**, 127, 283–290. [Google Scholar] [CrossRef] - Gatabazi, P.; Mba, J.C.; Pindza, E. Fractional gray Lotka- Volterra models with application to cryptocurrencies adoption. Chaos Interdiscip. J. Nonlinear Sci.
**2019**, 29, 073116. [Google Scholar] [CrossRef] [PubMed] - Wu, L.; Liu, S.; Yao, L.; Yan, S. The effect of sample size on the grey system model. Appl. Math. Model.
**2013**, 37, 6577–6583. [Google Scholar] [CrossRef] - Chen, H.; De, P.; Hu, Y.J.; Hwang, B.H. Wisdom of crowds: The value of stock opinions transmitted through social media. Rev. Financ. Stud.
**2014**, 27, 1367–1403. [Google Scholar] [CrossRef] - Kristoufek, L. What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS ONE
**2015**, 10, e0123923. [Google Scholar] [CrossRef] [PubMed] - Lahmiri, S.; Bekiros, S.; Salvi, A. Long-range memory, distributional variation and randomness of bitcoin volatility. Chaos Solitons Fractals
**2018**, 107, 43–48. [Google Scholar] [CrossRef]

29 July | 8 August | 18 August | |
---|---|---|---|

Quantiles | 10 Day | 20 Day | 30 Day |

25% | 9812 | 9590 | 8915 |

50% | 10,360 | 10,283 | 9956 |

75% | 10,841 | 11,029 | 11,161 |

90% | 11,342 | 11,818 | 12,049 |

95% | 11,881 | 12,245 | 13,157 |

99% | 11,963 | 12,885 | 13,600 |

mean | 10,085.65 | 10,085.66 | 10,085.68 |

skweness | −0.0899 | −0.0891 | −0.0626 |

kurtosis | 1.1390 | 0.5511 | 0.3755 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mba, J.C.; Mwambi, S.M.; Pindza, E.
A Monte Carlo Approach to Bitcoin Price Prediction with Fractional Ornstein–Uhlenbeck Lévy Process. *Forecasting* **2022**, *4*, 409-419.
https://doi.org/10.3390/forecast4020023

**AMA Style**

Mba JC, Mwambi SM, Pindza E.
A Monte Carlo Approach to Bitcoin Price Prediction with Fractional Ornstein–Uhlenbeck Lévy Process. *Forecasting*. 2022; 4(2):409-419.
https://doi.org/10.3390/forecast4020023

**Chicago/Turabian Style**

Mba, Jules Clément, Sutene Mwambetania Mwambi, and Edson Pindza.
2022. "A Monte Carlo Approach to Bitcoin Price Prediction with Fractional Ornstein–Uhlenbeck Lévy Process" *Forecasting* 4, no. 2: 409-419.
https://doi.org/10.3390/forecast4020023