Next Issue
Volume 3, September
Previous Issue
Volume 3, March
 
 

Soil Syst., Volume 3, Issue 2 (June 2019) – 20 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
29 pages, 468 KiB  
Article
Erosion Induced Heterogeneity of Soil Organic Matter in Catenae from the Baltic Sea Catchment
by Gerald Jandl, Christel Baum, Goswin Heckrath, Mogens H. Greve, Arno Kanal, Ülo Mander, Barbara Maliszewska-Kordybach, Jacek Niedzwiecki, Kai-Uwe Eckhardt and Peter Leinweber
Soil Syst. 2019, 3(2), 42; https://doi.org/10.3390/soilsystems3020042 - 19 Jun 2019
Cited by 7 | Viewed by 5035
Abstract
Soil organic matter (SOM) is unevenly distributed in arable fields in undulated landscapes, but the chemical composition resulting from their turnover, transport and deposition processes is insufficiently known. Therefore, we aimed at disclosing the molecular-chemical composition of SOM in four different catenae at [...] Read more.
Soil organic matter (SOM) is unevenly distributed in arable fields in undulated landscapes, but the chemical composition resulting from their turnover, transport and deposition processes is insufficiently known. Therefore, we aimed at disclosing the molecular-chemical composition of SOM in four different catenae at shoulderslope, backslope and footslope positions in arable fields in the Baltic Sea catchment, Europe. The backslope positions always had the lowest organic C-contents (Corg) (1.6…11.8 g·kg−1) and C-stocks (3.8…8.5 kg·m−2) compared to the shoulderslopes and footslopes (1.7…17.7 g·Corg·kg−1, 5.4…15 kg·Corg·m−2). In the SOM-poor backslope positions, the organic matter was characterized by relatively high proportions of carbohydrates, phenols + lignin monomers, alkylaromatic compounds, N-compounds and amides, indicating intensive microbial decomposition. By contrast, the footslopes had the largest Corg-contents (9.3…16.5 g·kg−1) and C-stocks (8.9…15 kg·m−2) in the catenae and particular enrichments in lipids, lignin dimers, sterols and free fatty acids. These relatively stabile SOM compound classes are interpreted as leftovers from erosive downslope transport and concurrent microbial decomposition, e.g., they are pronounced at backslope positions, followed by restricted microbial decomposition. This heterogeneous SOM distribution calls for an adapted soil management that reduces erosion and places amendments to field areas, such as the shoulderslope and backslope. Full article
(This article belongs to the Special Issue Soil Erosion and Land Degradation)
Show Figures

Figure 1

16 pages, 994 KiB  
Article
Sensitivity of Nematode Community Analysis to Agricultural Management Practices and Inoculation with Local Effective Microorganisms in the Southeastern United States
by Laura Ney, Dorcas Franklin, Kishan Mahmud, Miguel Cabrera, Dennis Hancock, Mussie Habteselassie, Quint Newcomer, Subash Dahal and Anish Subedi
Soil Syst. 2019, 3(2), 41; https://doi.org/10.3390/soilsystems3020041 - 14 Jun 2019
Cited by 10 | Viewed by 5322
Abstract
In order to ensure a soil system’s sustained ability to carry out ecosystem services, indicators that assess soil health are needed. We examined the capacity of nematode maturity index (MI), structure index (SI), enrichment index (EI), and trophic groups as measures of soil [...] Read more.
In order to ensure a soil system’s sustained ability to carry out ecosystem services, indicators that assess soil health are needed. We examined the capacity of nematode maturity index (MI), structure index (SI), enrichment index (EI), and trophic groups as measures of soil health, by determining soil nematodes’ sensitivity to cropping systems: rotation, perturbation, fertilization, and inoculation with local effective microorganisms (LEM). Plots were managed for two years under different rotations, annual ryegrass/fallow (ARF) and cereal rye/edamame soybean (CRS). In the third year of the study, all of the plots were managed exactly the same as a wheat/edamame rotation. Data were collected in both winter and summer of this year. In all three years, three inoculant treatments (LEM, False-LEM and No inoculate) were applied. In CRS plots, which received the most tillage and fertilization, there were greater SI values in soils that received LEM application. Nematode community structure described by each MI, SI, and EI were sensitive enough to reflect changes due to differences in soil management practices from previous years. Principal components analysis confirmed that nitrogen mineralization is an important measure to include when using nematode community analysis in the development of a soil health index. Full article
(This article belongs to the Special Issue Nematodes in Soil Systems)
Show Figures

Figure 1

16 pages, 1172 KiB  
Article
Multiple, Compounding Disturbances in a Forest Ecosystem: Fire Increases Susceptibility of Soil Edaphic Properties, Bacterial Community Structure, and Function to Change with Extreme Precipitation Event
by Joseph E. Knelman, Steve K. Schmidt, Vanessa Garayburu-Caruso, Swatantar Kumar and Emily B. Graham
Soil Syst. 2019, 3(2), 40; https://doi.org/10.3390/soilsystems3020040 - 12 Jun 2019
Cited by 15 | Viewed by 4686
Abstract
The intensity and frequency of ecosystem disturbances are shifting with climate change, and multiple disturbances in close succession have the potential to compound their independent effects and strongly alter ecosystem structure and function. In this paper, we examine the effects of an extreme [...] Read more.
The intensity and frequency of ecosystem disturbances are shifting with climate change, and multiple disturbances in close succession have the potential to compound their independent effects and strongly alter ecosystem structure and function. In this paper, we examine the effects of an extreme precipitation event on a montane forest landscape that was previously decimated by wildfire (37 months prior) relative to an unburned site in the same ecosystem. We assessed responses in soil edaphic properties, bacterial community composition and assembly, and soil enzyme activities involved in carbon (C) and nitrogen (N) acquisition. Our research reveals that previously burned landscapes are susceptible to a subsequent extreme precipitation event via significant increases in soil pH where unburned soils are not. Beta- and Delta-proteobacteria associated with early succession increased and shifts were observed in N- vs. C-acquiring extracellular enzymes within burned soils after the extreme precipitation event. Finally, we connected variation in ecological selective pressures on bacterial communities associated with pH change to these differences in microbial mediated soil enzyme activity. Thus, this research demonstrates how multiple, compounding disturbances drive distinct changes relative to systems experiencing a single disturbance and suggests that changes in bacterial community assembly process with disturbance may underlie this response. Full article
Show Figures

Figure 1

17 pages, 2852 KiB  
Article
Mapping Soil Biodiversity in Europe and the Netherlands
by Michiel Rutgers, Jeroen P. van Leeuwen, Dirk Vrebos, Harm J. van Wijnen, Ton Schouten and Ron G. M. de Goede
Soil Syst. 2019, 3(2), 39; https://doi.org/10.3390/soilsystems3020039 - 12 Jun 2019
Cited by 16 | Viewed by 9791
Abstract
Soil is fundamental for the functioning of terrestrial ecosystems, but our knowledge about soil organisms and the habitat they provide (shortly: Soil biodiversity) is poorly developed. For instance, the European Atlas of Soil Biodiversity and the Global Soil Biodiversity Atlas contain maps with [...] Read more.
Soil is fundamental for the functioning of terrestrial ecosystems, but our knowledge about soil organisms and the habitat they provide (shortly: Soil biodiversity) is poorly developed. For instance, the European Atlas of Soil Biodiversity and the Global Soil Biodiversity Atlas contain maps with rather coarse information on soil biodiversity. This paper presents a methodology to map soil biodiversity with limited data and models. Two issues were addressed. First, the lack of consensus to quantify the soil biodiversity function and second, the limited data to represent large areas. For the later issue, we applied a digital soil mapping (DSM) approach at the scale of the Netherlands and Europe. Data of five groups of soil organisms (earthworms, enchytraeids, micro-arthropods, nematodes, and micro-organisms) in the Netherlands were linked to soil habitat predictors (chemical soil attributes) in a regression analysis. High-resolution maps with soil characteristics were then used together with a model for the soil biodiversity function with equal weights for each group of organisms. To predict soil biodiversity at the scale of Europe, data for soil biological (earthworms and bacteria) and chemical (pH, soil organic matter, and nutrient content) attributes were used in a soil biodiversity model. Differential weights were assigned to the soil attributes after consulting a group of scientists. The issue of reducing uncertainty in soil biodiversity modelling and mapping by the use of data from biological soil attributes is discussed. Considering the importance of soil biodiversity to support the delivery of ecosystem services, the ability to create maps illustrating an aggregate measure of soil biodiversity is a key to future environmental policymaking, optimizing land use, and land management decision support taking into account the loss and gains on soil biodiversity. Full article
(This article belongs to the Special Issue Digital Soil Mapping of Soil Functions)
Show Figures

Figure 1

13 pages, 25330 KiB  
Article
Multireaction Modeling of Lead (Pb) and Copper (Cu) Sorption/Desorption Kinetics in Different Soils
by Tamer A. Elbana and H. Magdi Selim
Soil Syst. 2019, 3(2), 38; https://doi.org/10.3390/soilsystems3020038 - 31 May 2019
Cited by 7 | Viewed by 3919
Abstract
Batch kinetic experiments were carried out to quantify and describe the sorption/desorption of Cu and Pb in ten soils that exhibited a wide range of properties. Sorption isotherms were quantified using the Langmuir equation, whereas modeling of sorption/desorption kinetics was described using multireaction [...] Read more.
Batch kinetic experiments were carried out to quantify and describe the sorption/desorption of Cu and Pb in ten soils that exhibited a wide range of properties. Sorption isotherms were quantified using the Langmuir equation, whereas modeling of sorption/desorption kinetics was described using multireaction model (MRM). Results revealed the nonlinear sorption behavior of Cu and Pb in all soils. The ten soils exhibited higher affinity to Pb (6.4 to 36.5 mmol kg−1) in comparison to Cu (3.6 to 22.4 mmol kg−1). Simulation of Cu and Pb kinetic data indicated that the rate of sorption reaction was two orders of magnitude higher than the rate of release. Considering one irreversible site in addition to one-reversible kinetic site improved the estimation of rates of reaction for both Cu and Pb in acidic and alkaline soils. All soils exhibited sorption/desorption hysteresis where Pb-releases ranged between <0.2% and 14.4% of the total sorbed. The respective Cu releases ranged from <0.85% and 23.4%. The multireaction model, which was successful in describing Cu and Pb for all ten soils, provided insight into the processes of sorption/desorption of Cu and Pb in all soils. Full article
Show Figures

Figure 1

21 pages, 4038 KiB  
Article
Digital Mapping of Soil Classes Using Ensemble of Models in Isfahan Region, Iran
by Ruhollah Taghizadeh-Mehrjardi, Budiman Minasny, Norair Toomanian, Mojtaba Zeraatpisheh, Alireza Amirian-Chakan and John Triantafilis
Soil Syst. 2019, 3(2), 37; https://doi.org/10.3390/soilsystems3020037 - 28 May 2019
Cited by 34 | Viewed by 4744
Abstract
Digital soil maps can be used to depict the ability of soil to fulfill certain functions. Digital maps offer reliable information that can be used in spatial planning programs. Several broad types of data mining approaches through Digital Soil Mapping (DSM) have been [...] Read more.
Digital soil maps can be used to depict the ability of soil to fulfill certain functions. Digital maps offer reliable information that can be used in spatial planning programs. Several broad types of data mining approaches through Digital Soil Mapping (DSM) have been tested. The usual approach is to select a model that produces the best validation statistics. However, instead of choosing the best model, it is possible to combine all models realizing their strengths and weaknesses. We applied seven different techniques for the prediction of soil classes based on 194 sites located in Isfahan region. The mapping exercise aims to produce a soil class map that can be used for better understanding and management of soil resources. The models used in this study include Multinomial Logistic Regression (MnLR), Artificial Neural Networks (ANN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Bayesian Networks (BN), and Sparse Multinomial Logistic Regression (SMnLR). Two ensemble models based on majority votes (Ensemble.1) and MnLR (Ensemble.2) were implemented for integrating the optimal aspects of the individual techniques. The overall accuracy (OA), Cohen's kappa coefficient index (κ) and the area under the curve (AUC) were calculated based on 10-fold-cross validation with 100 repeats at four soil taxonomic levels. The Ensemble.2 model was able to achieve larger OA, κ coefficient and AUC compared to the best performing individual model (i.e., RF). Results of the ensemble model showed a decreasing trend in OA from Order (0.90) to Subgroup (0.53). This was also the case for the κ statistic, which was the largest for the Order (0.66) and smallest for the Subgroup (0.43). Same decrease was observed for AUC from Order (0.81) to Subgroup (0.67). The improvement in κ was substantial (43 to 60%) at all soil taxonomic levels, except the Order level. We conclude that the application of the ensemble model using the MnLR was optimal, as it provided a highly accurate prediction for all soil taxonomic levels over and above the individual models. It also used information from all models, and thus this method can be recommended for improved soil class modelling. Soil maps created by this DSM approach showed soils that are prone to degradation and need to be carefully managed and conserved to avoid further land degradation. Full article
(This article belongs to the Special Issue Digital Soil Mapping of Soil Functions)
Show Figures

Graphical abstract

19 pages, 3878 KiB  
Article
Cultured Microfungal Communities in Biological Soil Crusts and Bare Soils at the Tabernas Desert, Spain
by Isabella Grishkan, Roberto Lázaro and Giora J. Kidron
Soil Syst. 2019, 3(2), 36; https://doi.org/10.3390/soilsystems3020036 - 28 May 2019
Cited by 9 | Viewed by 2547
Abstract
We examined the variations in microfungal communities from different surface types (cyanobacterial crusts, lichen-dominated crusts, and noncrusted bare surface) at two different positions—north-oriented slope and sun-exposed plain in the Tabernas Desert, Spain. A total of 77 species from 46 genera was isolated using [...] Read more.
We examined the variations in microfungal communities from different surface types (cyanobacterial crusts, lichen-dominated crusts, and noncrusted bare surface) at two different positions—north-oriented slope and sun-exposed plain in the Tabernas Desert, Spain. A total of 77 species from 46 genera was isolated using the soil dilution plate method. The studied mycobiota, similar to the majority of desert mycobiotas, was dominated by melanin-containing species. However, in the Tabernas crusts, unlike the studied crusts of the Negev Desert (Israel) and the Tengger Desert (China), melanized fungi with large multicellular spores were much less abundantly represented, while the thermotolerant group, Aspergillus spp., remarkably contributed to the communities’ structure. Density of microfungal isolates positively correlated with chlorophyll content indicating possible significant influence of organic matter content on fungal biomass. The variations in crust composition, biomass, and the position of habitats were accompanied by the variations in microfungal community structure, diversity level, and isolate densities, with the communities at the plain sun-exposed position being much less variable than the communities at the north-oriented position. The study shows that microclimatic and edaphic factors play an essential role in the development of crust and noncrust microfungal communities, and their structure can be a sensitive indicator of changing environmental conditions at a microscale. Full article
Show Figures

Figure 1

16 pages, 2982 KiB  
Article
Soil Salinity Variations in an Irrigation Scheme during a Period of Extreme Dry and Wet Cycles
by Sheyda Chamaki, Saleh Taghvaeian, Hailin Zhang and Jason G. Warren
Soil Syst. 2019, 3(2), 35; https://doi.org/10.3390/soilsystems3020035 - 14 May 2019
Cited by 4 | Viewed by 3576
Abstract
Salinization of irrigated lands is a major challenge towards supplying required food and feed to meet the needs of an increasing global population. In this study, the changes in soil salinity and several other chemical properties were investigated in an irrigation scheme during [...] Read more.
Salinization of irrigated lands is a major challenge towards supplying required food and feed to meet the needs of an increasing global population. In this study, the changes in soil salinity and several other chemical properties were investigated in an irrigation scheme during a period that experienced severe drought followed by above-normal precipitation. Soil salinity, represented by the electrical conductivity (EC) of the saturated paste extract, decreased for the top layers and increased for the bottom layers during the study period, suggesting some level of leaching had occurred. However, the change in the average EC of top 1.5 m of the soil was not statistically significant. The change in exchangeable sodium percentage (ESP) was not significant over the study period either. In contrast, average pH and calcium concentrations increased and decreased significantly during the study period, respectively. EC and ESP data were used in soil classification. The percentage of all sampled sites classified as saline was 60 at the beginning of the dry–wet period, but dropped to 50% at the end of this period. All tested parameters were temporally stable, preserving their spatial rank during the study period. Full article
Show Figures

Figure 1

17 pages, 1556 KiB  
Article
What is the Best Inference Trajectory for Mapping Soil Functions: An Example of Mapping Soil Available Water Capacity over Languedoc Roussillon (France)
by Quentin Styc and Philippe Lagacherie
Soil Syst. 2019, 3(2), 34; https://doi.org/10.3390/soilsystems3020034 - 07 May 2019
Cited by 16 | Viewed by 3376
Abstract
Extending digital soil mapping to the mapping of soil functions that can support end-user decisions comes to coupling a digital soil mapping procedure and a soil function assessment method. This can be done following various possible inference trajectories following the order with which [...] Read more.
Extending digital soil mapping to the mapping of soil functions that can support end-user decisions comes to coupling a digital soil mapping procedure and a soil function assessment method. This can be done following various possible inference trajectories following the order with which “combining primary soil properties”, “aggregating soil layers across depths” and “mapping” are executed to provide the targeted output. Eighteen inference trajectories, designed for computing soil available water capacity maps in the Languedoc–Roussillon region (France), were compared with regard to their mapping performances. The best performance (SSMSE = 0.42) was obtained by a trajectory that, before mapping, combined the three first GlobalSoilMap soil layers and computed the available water capacity of each layer. The worst (SSMSE = 0.07) was observed when all the soil layers and soil properties were combined prior to mapping. We explain the observed differences between trajectories by examining the differences in mapping errors and in error propagation between the compared trajectories, which involve both the correlations between the soil properties and between their mapping errors. This paves the way to spatial soil inference systems that could perform an ex ante selection of the best possible inference trajectory for mapping a soil function. Full article
(This article belongs to the Special Issue Digital Soil Mapping of Soil Functions)
Show Figures

Graphical abstract

19 pages, 9073 KiB  
Article
Soil Degradation Mapping in Drylands Using Unmanned Aerial Vehicle (UAV) Data
by Juliane Krenz, Philip Greenwood and Nikolaus J. Kuhn
Soil Syst. 2019, 3(2), 33; https://doi.org/10.3390/soilsystems3020033 - 07 May 2019
Cited by 29 | Viewed by 5101 | Correction
Abstract
Arid and semi-arid landscapes often show a patchwork of bare and vegetated spaces. Their heterogeneous patterns can be of natural origin, but may also indicate soil degradation. This study investigates the use of unmanned aerial vehicle (UAV) imagery to identify the degradation status [...] Read more.
Arid and semi-arid landscapes often show a patchwork of bare and vegetated spaces. Their heterogeneous patterns can be of natural origin, but may also indicate soil degradation. This study investigates the use of unmanned aerial vehicle (UAV) imagery to identify the degradation status of soils, based on the hypothesis that vegetation cover can be used as a proxy for estimating the soils’ health status. To assess the quality of the UAV-derived products, we compare a conventional field-derived map (FM) with two modelled maps based on (i) vegetation cover (RGB map), and (ii) vegetation cover, topographic information, and a flow accumulation analysis (RGB+DEM map). All methods were able to identify areas of soil degradation but differed in the extent of classified soil degradation, with the RGB map classifying the least amount as degraded. The RGB+DEM map classified 12% more as degraded than the FM, due to the wider perspective of the UAV compared to conventional field mapping. Overall, conventional UAVs provide a valuable tool for soil mapping in heterogeneous landscapes where manual field sampling is very time consuming. Additionally, the UAVs’ planform view from a bird’s-eye perspective can overcome the limited view from the surveyors’ (ground-based) vantage point. Full article
(This article belongs to the Special Issue Soil Erosion and Land Degradation)
Show Figures

Graphical abstract

16 pages, 2718 KiB  
Article
Sustainability of Impacts of Poplar Growth on Soil Organic Matter in Eutric Cambisols
by Christel Baum, Martin Barth, Kathrin Henkel, Meike Siebers, Kai-Uwe Eckhardt, Ines Hilke, Gerd Gleixner and Peter Leinweber
Soil Syst. 2019, 3(2), 32; https://doi.org/10.3390/soilsystems3020032 - 06 May 2019
Viewed by 2945
Abstract
Short rotation coppices (SRC) with poplar on arable soils constitute no-till management in combination with a changed litter quality compared to annual crops. Both tillage and litter quality impact soil organic matter (SOM) composition, but little is known on the sustainability of this [...] Read more.
Short rotation coppices (SRC) with poplar on arable soils constitute no-till management in combination with a changed litter quality compared to annual crops. Both tillage and litter quality impact soil organic matter (SOM) composition, but little is known on the sustainability of this impact at the molecular level. We compared the microbial colonization and SOM quantity and quality of a young (4 years), old (17 years) and a former SRC with hybrid poplar (Populus maximoviczii × Populus nigra cv. Max) to adjacent arable sites with annual crops or grass. Total fungal and arbsucular mycorrhizal fungal phospholipid fatty acid (PLFA) markers were increased under no-till treatments with permanent crops (SRC and grass) compared to tilled cereals. Enrichments in fungal biomass coincided with C accumulation close to the soil surface (0–5 cm) but was abolished under former SRC after return to annual tillage. This management change altered the spatial distribution but not the accumulation of SOM within the topsoil (0–30 cm). However, lasting qualitative changes in SOM with increased proportions of lignin, lipids and sterols were found under current and former SRC. Increased colonization by arbuscular mycorrhizal fungi was correlated with increased invertase activity (R = 0.64; p < 0.05), carbohydrate consumption and a corresponding accumulation of lignins and lipids in the SOM. This link indicates a regulatory impact of mycorrhizal fungi on soil C dynamics by changing the quality of SOM. Increased stability of SOM to microbial degradation by higher portions of lipids and sterols in the SOM were assumed to be a sustainable effect of poplar growth at Eutric Cambisols. Full article
Show Figures

Figure 1

29 pages, 8211 KiB  
Article
Plant Organic Matter Really Matters: Pedological Effects of Kūpaoa (Dubautia menziesii) Shrubs in a Volcanic Alpine Area, Maui, Hawai’i
by Francisco L. Pérez
Soil Syst. 2019, 3(2), 31; https://doi.org/10.3390/soilsystems3020031 - 19 Apr 2019
Cited by 4 | Viewed by 3951
Abstract
This study examines litter accumulation and associated soil fertility islands under kūpaoa (Dubautia menziesii) shrubs, common at high elevations in Haleakalā National Park (Maui, Hawai’i). The main purposes were to: (i) Analyze chemical and physical properties of kūpaoa leaf-litter, (ii) determine [...] Read more.
This study examines litter accumulation and associated soil fertility islands under kūpaoa (Dubautia menziesii) shrubs, common at high elevations in Haleakalā National Park (Maui, Hawai’i). The main purposes were to: (i) Analyze chemical and physical properties of kūpaoa leaf-litter, (ii) determine soil changes caused by organic-matter accumulation under plants, and (iii) compare these with the known pedological effects of silversword (Argyroxiphium sandwicense) rosettes in the same area. Surface soil samples were gathered below shrubs, and compared with paired adjacent, bare sandy soils; two soil profiles were also contrasted. Litter patches under kūpaoa covered 0.57–3.61 m2 area and were 22–73 mm thick. A cohesive, 5–30-mm-thick soil crust with moderate aggregate stability developed underneath litter horizons; grain aggregation was presumably related to high organic-matter accumulation. Shear strength and compressibility measurements showed crusts opposed significantly greater resistance to physical removal and erosion than adjacent bare soils. As compared to contiguous bare ground areas, soils below shrubs had higher organic matter percentages, darker colors, faster infiltration rates, and greater water-retention capacity. Chemical soil properties were greatly altered by organic matter: Cations (Ca2+, Mg2+, K+), N, P, and cation-exchange capacity, were higher below plants. Further processes affecting soils under kūpaoa included microclimatic amelioration, and additional water input by fog-drip beneath its dense canopy. Substrate modifications were more pronounced below D. menziesii than A. sandwicense. Organic matter and available nutrient contents were higher under shrubs, where soils also showed greater infiltration and water-retention capacity. These trends resulted from contrasting litter properties between plant species, as kūpaoa leaves have higher nutrient content than silversword foliage. Different litter dynamics and reproduction strategies may also explain contrasting soil properties between the monocarpic rosettes and polycarpic kūpaoa. By inducing substantial substrate changes, Dubautia shrubs alter—or even create—different microhabitats and exert critical control on alpine soil development at Haleakalā. Full article
Show Figures

Figure 1

16 pages, 2506 KiB  
Article
Machine Learning-Based Prediction of Drainage in Layered Soils Using a Soil Drainability Index
by Ali Mehmandoost Kotlar, Bo V. Iversen and Quirijn de Jong van Lier
Soil Syst. 2019, 3(2), 30; https://doi.org/10.3390/soilsystems3020030 - 16 Apr 2019
Cited by 2 | Viewed by 3068
Abstract
Numerical modelling of water flow allows for the prediction of rainwater partitioning into evaporation, deep drainage, and transpiration for different seasonal crop and soil type scenarios. We proposed and tested a single indicator for drainage estimation, the soil drainability index (SDI) based on [...] Read more.
Numerical modelling of water flow allows for the prediction of rainwater partitioning into evaporation, deep drainage, and transpiration for different seasonal crop and soil type scenarios. We proposed and tested a single indicator for drainage estimation, the soil drainability index (SDI) based on the near saturated hydraulic conductivity of each layer. We studied rainfall partitioning for eight soils from Brazil and seven different real and generated weather data under scenarios without crop and with a permanent grass cover with three rooting depths, using the HYDRUS-1D model. The SDI showed a good correlation to simulated drainage of the soils. Moreover, well-trained supervised machine-learning methods, including the linear and stepwise linear models (LM, SWLM), besides ensemble regression with boosting and bagging algorithm (ENS-LB, ENS-B), support vector machines (SVMs), and Gaussian process regression (GPR), predicted monthly drainage from bare soil (BS) and grass covered lands (G) using soil–plant–atmosphere parameters (i.e., SDI, monthly precipitation, and evapotranspiration or transpiration). The RMSE values for testing data in BS and G were low, around 1.2 and 1.5 cm month−1 for all methods. Full article
Show Figures

Figure 1

20 pages, 2407 KiB  
Article
Soil N2O, CH4, and CO2 Fluxes in Forest, Grassland, and Tillage/No-Tillage Croplands in French Guiana (Amazonia)
by Caroline Petitjean, Cécile Le Gall, Célia Pontet, Kenji Fujisaki, Bernard Garric, Jean-Claude Horth, Catherine Hénault and Anne-Sophie Perrin
Soil Syst. 2019, 3(2), 29; https://doi.org/10.3390/soilsystems3020029 - 11 Apr 2019
Cited by 10 | Viewed by 4230
Abstract
The agricultural landscape of French Guiana (Amazonia) is expected to undergo substantial change as a result of rapid population growth in the region. Such changes in the landscape will lead to the conversion of tropical forests into land destined for agricultural use. Little [...] Read more.
The agricultural landscape of French Guiana (Amazonia) is expected to undergo substantial change as a result of rapid population growth in the region. Such changes in the landscape will lead to the conversion of tropical forests into land destined for agricultural use. Little information is available on the effect of different agricultural systems on greenhouse gas (GHG) emissions in French Guiana. For our experiment, two hectares of forest were cleared, without the use of fire, at the Combi experimental site (sandy-clayey Ferralsol) at the end of 2008. After one year with legume and grass cover, the site was modified to include the following three fertilized agricultural systems: (1) Grassland (Brachiaria ruziziensis, mowed), (2) cropland (maize/soybean rotation) with disc tillage, and (3) cropland (maize/soybean rotation) with no-tillage in direct seeding. Soil N2O, CH4, and CO2 fluxes were measured with dark chambers from May 2011 to November 2014. Our results show that grassland was a significantly lower emitter of N2O but a significantly higher emitter of CH4 compared to the two cropland systems studied. We did not observe significant differences between the two cropland systems for N2O and CH4 fluxes. Measurements of the net ecosystem CO2 exchange would be useful to better compare the role of different agricultural systems as a source of GHGs. Full article
Show Figures

Figure 1

24 pages, 694 KiB  
Review
The Case for Digging Deeper: Soil Organic Carbon Storage, Dynamics, and Controls in Our Changing World
by Cole D. Gross and Robert B. Harrison
Soil Syst. 2019, 3(2), 28; https://doi.org/10.3390/soilsystems3020028 - 09 Apr 2019
Cited by 90 | Viewed by 13301
Abstract
Most of our terrestrial carbon (C) storage occurs in soils as organic C derived from living organisms. Therefore, the fate of soil organic C (SOC) in response to changes in climate, land use, and management is of great concern. Here we provide a [...] Read more.
Most of our terrestrial carbon (C) storage occurs in soils as organic C derived from living organisms. Therefore, the fate of soil organic C (SOC) in response to changes in climate, land use, and management is of great concern. Here we provide a unified conceptual model for SOC cycling by gathering the available information on SOC sources, dissolved organic C (DOC) dynamics, and soil biogeochemical processes. The evidence suggests that belowground C inputs (from roots and microorganisms) are the dominant source of both SOC and DOC in most ecosystems. Considering our emerging understanding of SOC protection mechanisms and long-term storage, we highlight the present need to sample (often ignored) deeper soil layers. Contrary to long-held biases, deep SOC—which contains most of the global amount and is often hundreds to thousands of years old—is susceptible to decomposition on decadal timescales when the environmental conditions under which it accumulated change. Finally, we discuss the vulnerability of SOC in different soil types and ecosystems globally, as well as identify the need for methodological standardization of SOC quality and quantity analyses. Further study of SOC protection mechanisms and the deep soil biogeochemical environment will provide valuable information about controls on SOC cycling, which in turn may help prioritize C sequestration initiatives and provide key insights into climate-carbon feedbacks. Full article
Show Figures

Figure 1

14 pages, 4078 KiB  
Article
Pyrolysis Temperature Effects on Biochar–Water Interactions and Application for Improved Water Holding Capacity in Vineyard Soils
by Jon Marshall, Richard Muhlack, Benjamin J. Morton, Lewis Dunnigan, David Chittleborough and Chi Wai Kwong
Soil Syst. 2019, 3(2), 27; https://doi.org/10.3390/soilsystems3020027 - 09 Apr 2019
Cited by 38 | Viewed by 6325
Abstract
Grapevine cane and stalks were considered for pyrolysis at 400 to 700 °C to produce biochar for increasing the water holding capacity of vineyard soil. Feedstocks were pyrolysed using a continuous feed reactor and the resulting biochars characterized in terms of physico-chemical properties, [...] Read more.
Grapevine cane and stalks were considered for pyrolysis at 400 to 700 °C to produce biochar for increasing the water holding capacity of vineyard soil. Feedstocks were pyrolysed using a continuous feed reactor and the resulting biochars characterized in terms of physico-chemical properties, including water retention performance. Hydrophobicity was found in biochar from both feedstocks pyrolysed at 400 °C, but not at higher temperatures. At low soil matric potential, the pyrolysis temperature was the defining variable in determining water retention whereas at higher pressures, the feedstock was the more important variable. Available water content (AWC) of biochar increased with increasing pyrolysis temperatures, with optimal results obtained from grapevine cane at a pyrolysis temperature of 700 °C, which had an AWC 23% higher than a typical clay type soil. Principal component analysis showed variability in water retention of these biochars to be closely associated with the zeta potential, as well as the carbon and ionic content, suggesting that surface charge and hydrophobicity are key properties determining water holding capacity. Pure biochars were superior in water retention performance to typical sandy soils, and so biochar amendment of these soil types may improve water holding (particularly at field capacity). Further study with pot or field trials is recommended to confirm water retention behaviour and assess the feasibility of application under different viticultural scenarios. Full article
Show Figures

Figure 1

16 pages, 1739 KiB  
Article
Variation in Feedstock Wood Chemistry Strongly Influences Biochar Liming Potential
by Sossina Gezahegn, Mohini Sain and Sean C. Thomas
Soil Syst. 2019, 3(2), 26; https://doi.org/10.3390/soilsystems3020026 - 03 Apr 2019
Cited by 43 | Viewed by 4983
Abstract
Chars intended for use as soil amendment (“biochars”) vary greatly in their chemical and physical properties. In the present study, 19 Canadian temperate wood feedstocks were charred across a range of pyrolysis temperatures from 300–700 °C. The resulting 95 biochars were tested for [...] Read more.
Chars intended for use as soil amendment (“biochars”) vary greatly in their chemical and physical properties. In the present study, 19 Canadian temperate wood feedstocks were charred across a range of pyrolysis temperatures from 300–700 °C. The resulting 95 biochars were tested for their physio-chemical properties and liming capacity. Data indicated increasing base cation concentrations including Ca, Mg, and K (elements that characteristically form liming compounds, i.e., carbonates) as pyrolysis temperature increased. Acidic surface functional groups were analyzed with modified Boehm titration: Carboxylic and lactonic functional group concentrations decreased and phenolic group concentration increased with pyrolysis temperature. Functional group composition also varied greatly with feedstock: In particular, conifer-derived biochars produced at pyrolysis temperatures <500 °C showed much higher carboxylic and lactonic functional group concentrations than did angiosperm-derived biochars. Liming capacity was assessed using soil incubation experiments and was positively related to biochar pH. Both acidic surface functional group concentration and nutrient element concentration influenced biochar pH: we developed a non-linear functional relationship that predicts biochar pH from the ratio of carboxylic to phenolic moieties, and concentrations of Ca and K. Biochar’s liming components that are inherited from feedstock and predictably modified by pyrolysis temperature provide a basis for optimizing the production of biochar with desired pH and liming characteristics. Full article
Show Figures

Figure 1

17 pages, 2873 KiB  
Article
Seasonal Salinization Decreases Spatial Heterogeneity of Sulfate Reducing Activity
by Valerie A. Schoepfer, Amy J. Burgin, Terry D. Loecke and Ashley M. Helton
Soil Syst. 2019, 3(2), 25; https://doi.org/10.3390/soilsystems3020025 - 02 Apr 2019
Cited by 4 | Viewed by 2566
Abstract
Evidence of sulfate input and reduction in coastal freshwater wetlands is often visible in the black iron monosulfide (FeS) complexes that form in iron rich reducing sediments. Using a modified Indicator of Reduction in Soils (IRIS) method, digital imaging, and geostatistics, we examine [...] Read more.
Evidence of sulfate input and reduction in coastal freshwater wetlands is often visible in the black iron monosulfide (FeS) complexes that form in iron rich reducing sediments. Using a modified Indicator of Reduction in Soils (IRIS) method, digital imaging, and geostatistics, we examine controls on the spatial properties of FeS in a coastal wetland fresh-to-brackish transition zone over a multi-month, drought-induced saltwater incursion event. PVC sheets (10 × 15 cm) were painted with an iron oxide paint and incubated vertically belowground and flush with the surface for 24 h along a salt-influenced to freshwater wetland transect in coastal North Carolina, USA. Along with collection of complementary water and soil chemistry data, the size and location of the FeS compounds on the plate were photographed and geostatistical techniques were employed to characterize FeS formation on the square cm scale. Herein, we describe how the saltwater incursion front is associated with increased sulfate loading and decreased aqueous Fe(II) content. This accompanies an increased number of individual FeS complexes that were more uniformly distributed as reflected in a lower Magnitude of Spatial Heterogeneity at all sites except furthest downstream. Future work should focus on streamlining the plate analysis procedure as well as developing a more robust statistical based approach to determine sulfide concentration. Full article
Show Figures

Graphical abstract

19 pages, 2045 KiB  
Article
Chemical, Physical, and Hydraulic Properties as Affected by One Year of Miscanthus Biochar Interaction with Sandy and Loamy Tropical Soils
by Sara de Jesus Duarte, Bruno Glaser, Renato Paiva de Lima and Carlos Eduardo Pelegrino Cerri
Soil Syst. 2019, 3(2), 24; https://doi.org/10.3390/soilsystems3020024 - 29 Mar 2019
Cited by 14 | Viewed by 4540
Abstract
Biochar application has improved soil properties contributing to crop growth. This study evaluates the effect of biochar amount on soil physical, chemical and hydraulic properties in sandy (SD) and clay loam (CL) soils under tropical conditions. An incubation experiment was installed under laboratory [...] Read more.
Biochar application has improved soil properties contributing to crop growth. This study evaluates the effect of biochar amount on soil physical, chemical and hydraulic properties in sandy (SD) and clay loam (CL) soils under tropical conditions. An incubation experiment was installed under laboratory conditions with eight treatments (control, two kinds of soils, SD and CL, and three biochar doses (6.25, 12.5, and 25 Mg ha−1). Analyses of soil water retention, bulk density (BD), total porosity (TP), pores size, total carbon (TC), and N were performed after one year. The BD slightly decreased by 0.035 and 0.062 Mg m−3 and TP increased by 1.87 and 2.31% in CL and SD soil respectively, upon 6.25 to 25 Mg ha−1 biochar application. TC increased in CL and SD by 6.5 and 4.2 kg kg−1, respectively, compared to control. The total nitrogen content increased upon biochar addition in CL soil than in SD soil. We found a positive effect of biochar on water availability, microporosity, and a small effect on water retention, especially for CL soil at high biochar application, but this influence did not occur for SD, possibly due to the short time of interaction. Full article
Show Figures

Figure 1

15 pages, 2926 KiB  
Article
Fungicide and Bactericide Effects on Carbon and Nitrogen Cycling in Soils: A Meta-Analysis
by Mohammad Rahmat Ullah and Feike A. Dijkstra
Soil Syst. 2019, 3(2), 23; https://doi.org/10.3390/soilsystems3020023 - 27 Mar 2019
Cited by 23 | Viewed by 6653
Abstract
Fungi and bacteria play a central role in the cycling of carbon (C) and nitrogen (N), which has been frequently assessed by manipulating their abundance in soil with the application of fungicides and bactericides. We conducted a meta-analysis using 61 publications to investigate [...] Read more.
Fungi and bacteria play a central role in the cycling of carbon (C) and nitrogen (N), which has been frequently assessed by manipulating their abundance in soil with the application of fungicides and bactericides. We conducted a meta-analysis using 61 publications to investigate whether fungicides and bactericides have distinct effects on soil C- and N- cycling, and how they vary with land type and soil properties. Most fungicides and bactericides had significant negative effects on microbial biomass C and N. However, they had mixed effects on soil respiration, N pools, and transformation processes, varying strongly with the type of fungicide and bactericide. Available NO3 was lightly affected, while N2O emission was reduced by most biocides. The application of fungicides had neutral effects on respiration, NH4+, and ammonification in agro-ecosystems, but positive effects in forests. Effect sizes of available NO3 and nitrification in response to bactericides were sensitive to soil pH and C content. Our results suggest that most fungicides and bactericides inhibit microbial growth, but that they have mixed effects on respiration and N cycling. Biocides need to be carefully evaluated for unintentional side effects before they are used in assessing the role of fungi and bacteria for C- and N- cycling. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop