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Abstract: Soil is fundamental for the functioning of terrestrial ecosystems, but our knowledge
about soil organisms and the habitat they provide (shortly: Soil biodiversity) is poorly developed.
For instance, the European Atlas of Soil Biodiversity and the Global Soil Biodiversity Atlas contain
maps with rather coarse information on soil biodiversity. This paper presents a methodology to map
soil biodiversity with limited data and models. Two issues were addressed. First, the lack of consensus
to quantify the soil biodiversity function and second, the limited data to represent large areas. For
the later issue, we applied a digital soil mapping (DSM) approach at the scale of the Netherlands
and Europe. Data of five groups of soil organisms (earthworms, enchytraeids, micro-arthropods,
nematodes, and micro-organisms) in the Netherlands were linked to soil habitat predictors (chemical
soil attributes) in a regression analysis. High-resolution maps with soil characteristics were then
used together with a model for the soil biodiversity function with equal weights for each group of
organisms. To predict soil biodiversity at the scale of Europe, data for soil biological (earthworms and
bacteria) and chemical (pH, soil organic matter, and nutrient content) attributes were used in a soil
biodiversity model. Differential weights were assigned to the soil attributes after consulting a group
of scientists. The issue of reducing uncertainty in soil biodiversity modelling and mapping by the use
of data from biological soil attributes is discussed. Considering the importance of soil biodiversity
to support the delivery of ecosystem services, the ability to create maps illustrating an aggregate
measure of soil biodiversity is a key to future environmental policymaking, optimizing land use, and
land management decision support taking into account the loss and gains on soil biodiversity.

Keywords: digital soil mapping; soil functions; soil biodiversity; ecosystem services; soil
multi-functionality

1. Introduction

Healthy soil systems contain a very diverse assemblage of soil organisms, with a total biomass
often exceeding that of aboveground organisms [1,2]. Soils vitally contribute to the functioning of
ecosystems, for instance for providing a habitat for plants, animals and microorganisms, for water
regulation, and for nutrient cycling. Moreover, soil biodiversity plays a key role in regulating the
processes that underpin the delivery of many ecosystem services [3–8].
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Despite the generally agreed importance of soil biodiversity for sustaining life on earth, there
are not many data of soil biological attributes that represent extended soil gradients in time and in
space [3,9,10] (with the exception of [11]). Hence, maps and trends exhibiting soil biodiversity are
difficult to create, in contrast to maps of soil type, soil pH, and soil organic matter.

In 1992, soil biodiversity and its presumed decrease became a wider acknowledged issue with
the ratification of the Convention on Biological Diversity (CBD). This brought wider attention to the
beneficial use of biodiversity [12], besides the protection of species. In the EU thematic strategy for soil
protection, a range of soil threats was defined, but without soil biodiversity loss [13]. The knowledge
and the data on soil biodiversity were considered insufficient. Instead, research to underpin the
relevance of soil biodiversity and the expected downward trends due to intensive land use and soil
degradation was stimulated [14–17], including mapping and assessment approaches [18–21].

Recently, the 14th meeting of the Conference of the Parties (COP 14) of the Convention on
Biological Diversity (CBD) held in Sharm El-Sheikh, Egypt, 17–29 November 2018, called for two
important items: (1) To consider the preparation of a report on the state of knowledge on global soil
biodiversity and make it available for consideration before COP15 (2020), and (2) planning of an
international symposium in 2020 on global soil biodiversity.

The monitoring of soil biodiversity is hampered by a lack of clear definitions. Obviously, most soil
organisms cannot be seen by the naked eye, yet the total biomass is immense. Soil microbes should
be included in biodiversity assessment; yet microbial species richness is incredibly high. For soil
functioning, the density of catabolic units is relevant, but this is not often part of a biodiversity analysis.
Consequently, for a comprehensive view of soil biodiversity to assess the state of soils, we suggest
a simple three-dimensional mental frame for collecting and analyzing soil data covering diversity
(species, genes, biomolecules), activity (density, biomass, enzyme activities), and dynamics (food web
interactions, networks, resilience and resistance; inspired after [22–26]). Ideally, data collection and
analysis should address these dimensions independently.

Currently, there is no general consensus on how to set up biological soil monitoring [14]. Existing
soil monitoring activities vary widely in their scope, goal, duration, efforts, and in the parts of the soil
system that they represent. For specific research questions, monitoring of soil biological attributes has
been undertaken, generally within a small environmental window, with only a few texture types, land
uses, stressors, and types of organisms. We have no comprehensive overview but refer to descriptions
in Turbé et al. (2010) [14] and Van Leeuwen et al. (2017) [9]. For our study, we used existing data and
knowledge of the Netherlands soil monitoring network [11], and of a few selected EU projects [9,17].

Soil biological attributes that were feasible for routine measurements and that could be plausibly
linked to soil biodiversity and life support functions were included in the Netherlands soil monitoring
network (NSMN [11,27,28]), from the start in 1997 until the end of the last monitoring cycle in 2014.
The selected attributes are soil community parameters of earthworms, nematodes, enchytraeids, and
micro-arthropods and a large range of microbial parameters. Van Wijnen et al. (2012) [29] used these
data for digital soil mapping of a specific soil function: The natural attenuation capacity of soils.
The model was based on predictive environmental properties and selected biological soil data from the
NSMN according to an expert model for this soil function.

Soil biodiversity maps at the continental level are more difficult to assemble, because of a lack
of consistent data. A general state of soil biodiversity in Europe was first described in the European
Atlas of Soil Biodiversity [30] with distribution maps of soil faunal groups (e.g., tardigrades, rotifers,
nematodes, etc.), which show the estimated number of species per biogeographic area or country.
The resolution in these maps is very low. In a follow up, the Global Atlas of Soil Biodiversity [31]
presented global maps with predictions for soil fungi based on a digital soil mapping procedure and a
map with a soil biodiversity index based on microbial biomass and 14 co-occurring soil fauna groups.

Recently, Aksoy et al. 2017 [32] produced a high-resolution map illustrating the soil biodiversity
potential in Europe. The map was constructed from various spatially explicit layers with information
of predictive properties for the quantification of soil biodiversity according to expert knowledge.
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These properties were soil-pH, texture, soil organic matter, evapotranspiration, temperature, soil
biomass productivity, and land use type. Aksoy et al. (2017) [32] compared their map with the
maps of earthworm community metrics of Rutgers et al. (2016) [21] and found that these maps were
statistically correlated.

In the EU FP7 project EcoFINDERS, for the first time, a European-wide schema was designed
for monitoring soil biodiversity attributes and was tested in a pilot study with 81 locations [17,33].
The pilot contained samples from forestry, arable, and grassland systems in five climatic zones of
Europe. Griffiths et al. (2016) [20] found a strong correlation between soil pH and bacterial diversity
(TRFLP analysis) in these samples, and produced a bacterial diversity map of Europe. Earthworms
were excluded from the monitoring for logistical reasons [33], but Rutgers et al. (2016) [21] instead
collected and harmonized existing earthworm data from 3838 sites in several European countries
and applied digital soil mapping in order to produce a European map with earthworm community
parameters, i.e., abundance, richness, and Shannon–Wiener index.

Gardi et al. (2013) [15] produced a European map with threats to soil biodiversity as perceived
by 20 experts, demonstrating the need for reliable information on the issue whether soil biodiversity
decrease should be considered as a threat to soil quality affecting our natural environment.

The objective of this study is to demonstrate how data limitations in the first place, and limitations
in the modelling of soil biodiversity in the second place, can be efficiently dealt with in a digital soil
mapping approach. As proof of the two concepts, we produced two maps of the soil biodiversity and
habitat function of soils, one for the Netherlands and one for Europe. This work in progress is a follow
up of earlier publications on a regional scale (e.g., Scotland [34], France [35,36], Netherlands [29]), and
European scale (e.g., [20,21,30,32,37]). We took advantage of the progress of the monitoring of soil
biological attributes in the Netherlands [11] and in many EU-projects, i.e., SoilTrec [38], Soilservice [16],
EcoFINDERS [17,33], and LANDMARK [9]. The operationalization of the soil biodiversity function as
one of five overarching soil functions was performed according to the design in the EU H2020 project
LANDMARK (Land management: Assessment, research, knowledge base [39,40]).

We used regression analyses to relate soil biological attributes to predictive environmental
parameters for which high-resolution maps exist. We used models for quantification of soil biodiversity
and habitat provisioning based on the set of soil attributes. With the models and the results from the
regressions, we produced maps for the Netherlands and Europe. Because of limited data and the lack
of standardized models for quantification of the soil biodiversity function, slightly different procedures
had to be followed, all making efficient use of sparse information. Data from the NSMN were used
for the map of the Netherlands. Data from the monitoring in the EU-project EcoFINDERS were used
for the European map. Verification of the maps was done at two levels: Uncertain predictions from
the steps in the DSM approach in the map of the Netherlands, and uncertain quantification of the soil
biodiversity function in the map of Europe. The challenges and criticisms associated with mapping
soil biological attributes and soil biodiversity are discussed.

2. Materials and Methods

2.1. Data Sources: Netherlands

Soil biological attributes were analyzed in the Netherlands soil monitoring network (NSMN) as
described by Rutgers et al. (2009) [11]. The data from the first monitoring cycle (1999–2004) were
compiled for multiple regression analysis as described in Van Wijnen et al. (2012) [29]. Generalized
linear regression models (GLMs) of the Gaussian family were used to relate the soil biological attributes
to predictive environmental properties [41]: Land use, soil type, and other environmental parameters
(Table S1, Supplementary section). The models to be fitted with available data were all formulated to
be according to the syntax (Equation (1)):
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Response biological attribute =

Intercept + a · Loess + b · Alluvial Clay + c · Peat + d · Sand + e · Dairy grass +

f · Arable + g · Semi-natural grass + h · Heather + i ·Mixed forest +

j · Longitude + k · Longitude2 + l · Latitude + m · Latitude2 + n · SOM + o · SOM2 +

p · pH + q · pH2 + r · Clay-particles + s · Clay-particles2 + t · Pal + u · Pal2

(1)

where loess, alluvial clay, peat, sand (soil texture types), and dairy grass, arable, semi-natural grass,
heather, mixed forest (land uses) are categories (integer: 0 or 1), SOM is soil organic matter (%), clay
particles (<2 µm%), and Pal is phosphorus in ammonium lactate extraction (mg/L).

The quadratic terms for the scalar predictors in the regression formula allow for predicting
non-linear responses as inflicted by optimum and minimum conditions.

The regression models were calibrated using a stepwise procedure based on the Bayesian
information criterion (BIC) [42]. This is done in order to restrict the addition of terms to those that have
a significant contribution to the overall model, making the full model highly significant. Calculations
were conducted using S-Plus 2000 (MathSoft, Cambridge, MA). Subsequently, the regression formulae
were used to generate high-resolution maps of soil biological attributes.

For almost all soil biological attributes in the NSMN, significant GLMs were obtained (Table S1;
Supplementary Section), like: Bacterial activity (pmol leucine or thymidine/g dry soil/h), potential carbon
mineralization rate (mg C/kg dry soil/wk), potential nitrogen mineralization rate (mg N/kg dry soil/wk),
nematode density (n/100 g fresh soil), nematode richness (n taxa), lumbricidae density (n/m2), lumbricidae
richness (n taxa), enchytraeidae density (n/m2), enchytraeidae richness (n taxa), micro-arthropod density
(n/m2), and micro-arthropod richness (n taxa). For more information on the monitoring design, the
sampling, and analysis of soil biological attributes, see Rutgers et al. (2009, 2012) [11,28].

2.2. Data Sources: Europe

In 2012, the FP7 project EcoFINDERS organized a European sampling campaign with 81 sampling
sites spanning three land uses (cropland, grassland, forestry), five climate zones (Atlantic, continental,
Mediterranean, alpine, boreal), and gradients in texture, soil organic matter, and pH, as described by
Stone et al. (2016) [33]. Besides potential environmental predictors, a range of soil biological parameters
were analyzed: Nematode, enchytraeid, micro-arthropod, and protist community parameters, and many
microbial community parameters (archaea, bacteria, fungi), some functional genes, and physiological
profiles. The data were published in a set of articles in a special issue of Applied Soil Ecology in
2016 [17,20,21,33,43–47].

Regressions such as boosted regression trees and classical GLM did not produce suitable models
for the predictive environmental properties (land use, climate zone, and other environmental and soil
properties). For that reason, it was decided to use median values of the soil biological attributes in the
categories of the sampling network (three land use types and five climatic zones) in the mapping procedure.

For logistical reasons, the sampling and analysis campaign in EcoFINDERS did not include the
analysis of earthworms: Sampling takes a lot of time, and trained personnel should do the analysis. This
was not feasible in the setup of the EcoFINDERS project. Instead, Rutgers et al. (2016) [21] collected
earthworm data from existing data sources in several European countries. In total, 3838 records with
earthworm data were collected in order to construct earthworm maps of Europe with digital soil mapping.

2.3. Modelling and Mapping Soil Biodiversity: Netherlands

The proxy-indicator system for modelling soil biodiversity and habitat provisioning in the
Netherlands was based on eleven biological soil attributes, representing five groups of soil organisms:
Microorganisms (C and N potential mineralization rates, leucine incorporation rate) and abundances
and richness of communities of nematodes, enchytraeids, earthworms, and micro-arthropods. More
information on the monitoring and the indicators can be found in Rutgers et al. (2009) [11]. For these
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soil attributes, GLMs were derived from data of the first monitoring cycle (1999–2004) of the NSMN
with predictive environmental properties (Table S1; Supplementary Section).

Maps with predictive environmental properties were the same as described in Van Wijnen et al.
(2012) [29]. In every grid cell of the map, the value of the biological attribute was predicted with the
regression models. The average value of all grid cells in the Netherlands was used in the calculation of
the z-score, a standardized difference between the mean of a distribution and the value of an individual
biological attribute [48]. In this way, the maps with biological attributes show relative values in
standard deviations scaled to the national average value, which is set to zero. This procedure makes it
possible to combine maps of very different soil biological attributes, into quantification of the relative
soil biodiversity function.

In total, 11 maps with soil biological attributes were summed up using equal weights for each
of the five groups of soil organisms (20% per group) and equal weights for the attributes within a
group (with fauna: 50% for abundance and 50% for richness; with microbes: 33% for each attribute).
In this way, quantification of soil biodiversity was obtained only with soil biological attributes, while a
digital soil mapping approach was adopted based on predictive environmental properties, i.e., pH,
SOM, texture, nutrients (N and P), land use, and coordinates [29]. This is in contrast to the European
analysis (next paragraph), where information of chemical soil attributes was also used to model the
soil biodiversity function.

2.4. Modelling and Mapping Soil Biodiversity: Europe

The proxy indicator system for modelling and mapping of the soil biodiversity function of Europe
was based on 11 biological and chemical soil attributes: Total organic carbon (TOC), total nitrogen,
total phosphorous, pH, clay content, three earthworm community metrics (abundance, richness, and
Shannon index), microbial (bacteria plus fungi) biomass, bacterial biomass, and bacterial diversity.
The process of attribute selection and ranking is described in Van Leeuwen et al. (2017) [9]. In short,
expert knowledge was collected through questionnaires to gather scores for attributes using a logical
sieve method [49]. Attributes were scored on relevance (R) and on sensitivity (S) towards four
integrated attributes (‘biology’, ‘nutrients’, ‘structure’, and ‘hydrology’). The integrated attributes
aided in steering the usability of the information provided by the attributes towards the quantification
of soil biodiversity. A weight factor for each of these integrated attributes towards soil biodiversity
was also included in the questionnaire. The scores for relevance and sensitivity of the attributes for
each integrated attribute and the weight factor of the importance of the integrated attributes were used
to calculate a score for the attributes for soil biodiversity using the formula (Equation (2)):

X =
∑ R + S

2
W (2)

where X = score for the attribute X, R = relevance value of attribute X to the integrated attributes, S =

sensitivity value of attribute X to the integrated attributes, and W = weighting factor of the importance
of the integrated attributes (fraction; sum of weight factors is 1).

As the scores were, in some attributes, quantified at the aggregated level (organic C/N/P/K received
a single score), these scores were disaggregated (fractions shown in Table 1). Besides a score for
relevance and sensitivity, we also included an assessment on data availability and quality. For the
predictive attributes based on maps of LUCAS top soil data [50], a score of 1 was used, because
the maps were produced with a high density of point data across Europe. For the other attributes,
linear regression models were used, based on data from the EcoFINDERS project (microbial biomass,
bacterial biomass and diversity, and earthworm community [21,33]). For these attributes, the explained
variation (R2) of the model was used as measure for data quality. The scores for data quality were
added to the logical sieve weights.

Some attributes (TOC, pH, clay content, and bacterial diversity) will not show a positive
proportional relationship with the soil biodiversity function. For TOC, we used a ceiling of 15%
to avoid overrepresentation of peat soils. For soil pH, an optimum was assumed at a pH(H2O) of
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6.5 [36,51,52]. For clay content, an optimum was assumed at 25% clay particles, as lower values
show a decrease in fertility and microbial biomass [53], and higher values may lead to anaerobic
conditions [54]. For bacterial functional diversity, 1—hillslope from the community-level physiological
profile determined in Biolog plates—was used as a measure for richness [47].

Table 1. Scores and final weight factors of six soil biological attributes and five chemical attributes in
the model for soil biodiversity and habitat provisioning (see [9]).

Attribute Score Logical
Sieve (X)

Fraction from
Aggregated Score

Data
Quality (r2)

Final Weight
Factor (W) Adaptation of Dataset

%Total Organic C 3.24 0.50 1 2.12 if TOC < 15% Biodiv_TOC =
TOC else Biodiv_TOC = 15%

Total N 3.24 0.167 1 0.71

Total P 3.24 0.167 1 0.71

pH 3.14 1 1 4.14 Biodiv_pH = (6.5 − abs(pH
− 6.5))

%Clay 3.13 1 1 4.13 Biodiv_Clay = (25% −
abs(Clay − 25%))

Earthworm abundance 3.49 0.50 0.252 1.87

Earthworm Shannon 3.49 0.26 0.267 0.97

Earthworm Richness 3.49 0.24 0.249 0.90

Microbial biomass 3.40 1 0.821 4.22

Bacterial abundance 3.46 0.49 0.372 1.88

Bacterial diversity 3.46 0.51 0.381 1.96 Rich_Bacterial = 1.0 −
Functional_Rich

The attributes were plotted on the maps according to their z-scores taking the distribution of all
data on the map into account. This resulted in maps with a total count for the z-scores of zero, i.e., at
exactly the mean value for the attribute [48]. Each map was multiplied with the normalized weight
factor from Table 1 and added to the integrated map. In this way, a proxy for the relative status of soil
biodiversity and habitat provisioning was depicted on the map of Europe.

2.5. Verification of Spatially Explicit Predictions: A Regional Study in the Netherlands

The reliability of predictions of soil biological attributes on the map of the Netherlands was
analyzed with data from the second monitoring cycle of the NSMN 2006–2011. Field observations
in the NSMN from all sites in the province of Noord-Brabant (n = 49) were taken for a comparison
with the values of soil characteristics on the maps and the soil biological attributes predicted by the
regression models [55].

First, the actual soil type and land use of each site in the Province of Noord-Brabant was compared
with the predicted soil type and land use. When there was a mismatch in the land use prediction, the
nearest location with the correct land use was selected with the function NEAR in ArcGIS, and that
was taken as the site for comparison.

Second, observations on soil biological attributes and soil characteristics at 49 sites in the second
monitoring cycle of the NSMN were compared with the existing soil maps (described in [29]) and
subsequently with the values for soil biological attributes predicted by the regression models (Table S1,
supplementary section). From the 49 sites, all but one (discarded from the analysis) were on sandy
soils (WSR: gleyic podzol): 29 dairy farms (grassland), 2 arable farms, 8 forest sites, 7 heather sites, and
2 semi-natural grasslands. Data from predictive environmental properties (SOM, pH, clay content, Pal)
and predicted biological attributes (abundance and richness of earthworms, nematodes, enchytraeids,
and micro-arthropods, and micro-organisms) were compared with the observed properties according
to the equation (Equation (3)):

Delta VARpred|obs = (VARpred − VARobs) · (VARobs mean)−1 (3)
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where VAR is the environmental property or the biological soil attribute. The subscript ‘obs’ indicates
the data from observations in the second monitoring cycle of the NSMN, and ‘pred’ indicates the input
from existing soil maps [29] or from the regression analysis (this study).

2.6. Verification of Predictions on Soil Biodiversity: Europe

The soil biodiversity map of Europe in this study was correlated with the map produced by Aksoy
et al. (2017) [32] in order to compare predictions of both models. For verification, Kendall’s correlation
coefficient was used. Also, a ‘difference map’ was produced, to visualize local deviations of both maps.
For this, the European map was reclassified to 10 classes using a natural breaks algorithm available in
ArcGIS. Break points were identified by choosing the class breaks that best group similar values and
that maximize the differences between classes. This reclassified map was then subtracted from the
map produced by Aksoy et al. (2017) [32], which also consists of 10 classes. Due to the low resolution
of the map at European scale, a direct comparison with point data for verification was considered not
to be realistic.

3. Results and Discussion

3.1. Netherlands

A relative measure for soil biodiversity and habitat provisioning (referred to as soil biodiversity)
was calculated with the z-scores from 11 soil biodiversity attributes and plotted on the map of the
Netherlands (Figure 1).
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Figure 1. Predicted soil biodiversity in the Netherlands (relative; sum of z-scores). Predictions for 11
soil biological attributes were taken as a proxy for the calculation of the soil biodiversity: Abundances
and richness of four soil fauna groups (earthworms, enchytraeids, nematodes, and micro-arthropods)
and attributes for the microbial community (C and N mineralization rate and leucine incorporation rate).
The data were obtained from the Netherlands soil monitoring network (NSMN; Rutgers et al. 2009).

Many gradients can be observed in this map, mostly agreeing with observations already described
in the soil biodiversity literature, such as a lower soil biodiversity in arable (tillage) systems compared
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to grassland systems, a lower soil biodiversity in sandy soils compared to loam and clay, and a high
soil biodiversity in drained peat soils due to high bacterial activity and biomass [11,16]. It might be
surprising to find an intermediate soil biodiversity in the ‘Hoge Veluwe’, a large nature area in the
Netherlands (Figure 1, large yellow area in the center). One explanation might be the neglect of the
fungal community as a building stone for the complete proxy indicator system. Fungi were included
in the NSMN at a late stage [11], so not enough data were collected for regression analysis. It is known
that the density and richness of fungal communities in this nature area is high (data from the second
monitoring cycle of the NSMN).

Besides missing indicators for, e.g., the soil fungi, we did not derive specific weights for different
soil attributes contributing to the quantification of soil biodiversity. Also, many modern biodiversity
indices were not explored for applicability to quantify the soil biodiversity function. Consequently,
this soil biodiversity map of the Netherlands should be seen as one step in a series to improve soil
biodiversity mapping by more and reliable data and through underpinning with better biodiversity
models, for instance such as the biodiversity model developed in the LANDMARK project [9,39].

3.2. Verification of Predictions of Soil Biological Attributes (Netherlands)

Confidence levels in mapping need to be addressed before we can make an exploration towards
practical application. As a first step in addressing uncertainty in the maps presented here, the
biodiversity map of the Netherlands was used to clarify the reliability of the predictions from the
‘digital soil mapping’ approach. Accordingly, the predictions for the condition of soil biological
attributes were verified with data of 49 sites in the Province of Noord-Brabant, which were obtained
independently in the second monitoring cycle of the NSMN (2006–2011). The difference in predicted and
observed values for soil biological attributes can provide some insight to the error of the predictions, and
confidence levels of the maps. The Province of Noord-Brabant was the first region in the Netherlands
where this was tested [55].

The soil texture type in the maps was the same as found in the field, but this is not surprising,
because the major soil texture type in the province of Noord-Brabant is sand (gleyic podzol:
Approximately 90% of the total area). The land use was predicted poorly and was only correct
for about 50% of the sites. This observation might come from a mismatch between the coordinates of
the sampling and the coordinates of the farm registration in the database for administrative reasons,
or from a change in the land use between the land use map (LGN6 [56]) and the land use during the
sampling in the second round of the NSMN.

In Table 2 a summary of the comparison is presented. The observations for all soil biological
attributes at 49 sites are on average 5% lower than the predictions from regression models; the average
error is 5%. However, taking the errors in an absolute sense (positive and negative values are both
adding to the error), the error is 45%. For agricultural grassland sites (29), the average error is very small
(2%), but the absolute total error is comparable to that of forest and heather (Table 2). Semi-natural
grasslands and arable systems were not analyzed separately because not enough data were available.
The somewhat limited performance for forestry and heather is, besides the role of sample size, partly
the result of relatively large overprediction of micro-arthropod abundance. On average, the predictions
for micro-arthropod abundance were more than two times higher than observed.

Part of the error in modelled predictions of biological attributes also arises from differences in the
values of the soil properties in the higher-resolution soil maps (e.g., soil organic matter, pH, nutrients (N
and P), clay content [29]) with the actually measured soil properties in the NSMN 2006–2011. The error
in map values and field data for soil parameters was, on average, 14% and the absolute total error
was 30% (data not shown). The clay content was predicted poorly (−69%), but this was not an issue
for concern, since sandy soils have a low clay content and no significant effect on the prediction is
expected. Overall, the error in the chemical soil predictors also contributed to differences between
predicted and observed condition of soil biological attributes, which is a disadvantage of the digital
soil mapping approach [57].
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Table 2. Difference between predicted and observed values (expressed in fractions) for 11 biological attributes in 49 soil samples of the Province Noord-Brabant [54]).

All
Biological
Attributes

Earthworm
Richness

Earthworm
Abundance

Enchytraeid
Richness

Enchytraeid
Abundance

Microarthropod
Richness

Microarthropod
Abundance

Nematode
Richness

Nematode
Abundance

Potential N-
Mineralization

Potential C-
Mineralization

Leucine
Incorporation

Rate

mean (49) −0.05 −0.08 −0.23 0.01 0.00 −0.19 −0.69 0.10 0.02 0.03 −0.01 0.45

standard
deviation 0.57 0.33 0.56 0.32 0.81 0.42 1.34 0.20 0.64 0.39 0.57 0.73

minimum −0.83 −1.33 −0.50 −1.40 −1.51 −3.41 −0.35 −0.64 −0.77 −0.96 −0.73

maximum 0.52 1.04 1.14 3.51 0.51 1.81 0.41 2.19 0.63 1.32 2.26

ABS mean 0.45 0.27 0.48 0.24 0.56 0.35 1.02 0.19 0.44 0.33 0.47 0.63

mean
agr.grass

(29)
0.02 −0.18 −0.41 0.03 −0.15 −0.27 0.12 0.15 0.17 0.04 0.03 0.67

ABS mean
agr.grass 0.43 0.30 0.54 0.23 0.69 0.29 0.43 0.17 0.48 0.33 0.47 0.82

mean
forest (8) −0.35 0.16 -0.04 −0.08 0.16 −0.50 −2.16 −0.23 −0.57 −0.20 −0.59 0.14

ABS mean
forest 0.54 0.16 0.15 0.16 0.43 0.63 2.16 0.25 0.57 0.31 0.59 0.52

mean
heath (7) −0.14 0.09 0.08 −0.19 0.19 0.18 −2.15 0.11 −0.03 0.18 −0.03 −0.01

ABS mean
heath 0.41 0.09 0.08 0.29 0.39 0.26 2.22 0.11 0.22 0.40 0.35 0.08

‘ABS mean’ is absolute mean (difference) and indicates error. Between brackets, the number of sampling sites. The averages of semi-natural grasslands (2) and arable sites (2) are not
shown separately.
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3.3. Europe

The predicted soil biodiversity function for Europe is presented in Figure 2. Some observations
in this map are confirmed with data on soil biodiversity in the scientific literature. For instance, the
soil biodiversity is higher in grassland systems than in arable systems [11,16] the predicted low soil
biodiversity in Lower Saxony and Denmark might be explained by the arable land use with abundant
use of manure from the cattle industry. Furthermore, to the south, there seems to be a trend to a lower
soil biodiversity coinciding with increased temperatures, lower humidity, and subsequently, a lower
soil organic matter content. A higher soil biodiversity is demonstrated in the temperate and relatively
wet areas in the west and north-west of Europe, especially in soils with high organic matter content.
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Figure 2. Predicted relative soil biodiversity in several European countries (sum of z-scores). Predictions
for six biological soil attributes and five chemical soil attributes together were taken as a proxy for the
soil biodiversity function, i.e., total organic C, total N, total P, pH, clay content, abundance, Shannon
diversity and richness of earthworms, microbial biomass and bacterial abundance, and diversity.
The data were obtained from the EU FP7 project EcoFINDERS and the LUCAS soil survey [17,33,58].

3.4. Comparison of Models for Assessing Soil Biodiversity (Europe)

In order to investigate the performance of our model and available data for assessing soil
biodiversity on the European map as request to validate our map, we used the model and map of
Aksoy et al. (2017) [32]. True validation of a soil biodiversity map is impossible as outlined in the
introduction. To test whether the maps tend to agree or disagree, we did a correlation analysis. Per
raster cell the correlation between the maps appeared to be very significant (Kendalls’ tau = 0.41,
p < 0.0001; Figure 3). Consequently, there is no reason to discard any map based on this correlation. Of
course, there is a chance that both maps are ‘overall’ wrong, but this chance becomes smaller when
more data and knowledge contributing to the conceptual soil biodiversity model become available.
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For a more thorough analysis, we subtracted the map in Figure 2 from the map presented by
Aksoy et al. (2017) [32] (Figure 4). A striking difference between the soil biodiversity maps is visible in
‘Les Landes’ (south-west of France) where we predict a relative low soil biodiversity while Aksoy et al.
(2017) [32] predicted an intermediate soil biodiversity. On the other hand, in Brittany (very west part
of France), our predictions show an intermediate soil biodiversity, while the predictions by Aksoy and
colleagues are low. The cause of mismatches might be also found in the combined effects of a limited
amount of data, a lack of representativeness (i.e., problems associated with our ignorance to quantify
soil biodiversity), errors in the predictive soil properties, and spatial and temporal variation. Also,
differences in the expert judgement-based conceptual models for quantification of soil biodiversity in
both maps will be illuminated in the difference map (Figure 4).

Although both maps predict soil biodiversity differently, the fact that the maps are correlated
means that there is no need to examine the origin of the differences. Furthermore, as long as we do not
have a key to improving the models for the mapping and assessment of soil biodiversity and we are still
lacking data for verifying sources of uncertainty, finalization of a soil biodiversity model is impossible.
Consequently, our conclusion is that both maps add to the knowledge base about quantification and
assessment of soil biodiversity.

The model for quantifying soil biodiversity of Aksoy and colleagues differs from our model, in the
sense that we included soil biological attributes. They labeled their map as a ‘potential’ soil biodiversity
map, acknowledging that only ‘indirect’ indicators (chemical, physical, and land use parameters) for
soil biodiversity were used. The inclusion of biological attributes would possibly improve the maps as
we have shown here, because of the use of more direct information. However, we acknowledge that
available soil biological data is generally insufficient for mapping and that ‘indirect’ soil attributes are
a practical alternative. Although we advocate the use of biological attributes for quantification of the
soil biodiversity function, we are aware that, also with this information, there is still no consensus on
how to quantify and assess soil biodiversity in the very complex soil system [3,25,26].Soil Syst. 2019, 3, x FOR PEER REVIEW 3 of 18 
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data of the map in Figure 2. The relative status of the soil biodiversity was quantified by Aksoy and
colleagues in 10 discrete levels. The quantification of the soil biodiversity with z-scores in this paper,
was continuous.
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the map in Figure 2. Positive numbers signify a higher estimation by Aksoy and colleagues.

For practical soil monitoring, we would like to stress that there is no reason to not include biological
attributes, despite the perception that collecting such data produces highly variable results and is
costly to conduct. In the Netherlands soil monitoring network, we have proven that it is feasible to
include affordable, sensitive, reliable, and robust soil biological indicators in a practical soil-monitoring
network [11], and to display this information on a map ([29,55] this study). Consequently, it seems a good
moment to start collecting data and monitor soil biological attributes in Europe and worldwide, as some
researchers did already in several European pilots with soil biological attributes: In EcoFINDERS [33],
LANDMARK [9], and in the monitoring schema for LUCAS 2018 (https://esdac.jrc.ec.europa.eu/

projects/lucas).
In the European soil biodiversity model, we considered both biological and abiotic soil attributes

as useful, using all available information as efficiently as possible, despite the sometimes-unfortunate
low signal-to-noise ratio of some attributes. We combined the information and applied a multi-criterion
‘logical sieve’ weighting approach for including relevant attributes in the final model, irrespective of
the type of the attribute [9,49].

It must be stressed that the data from the 81 sites in the FP7 EcoFINDERS project had severe
limitations: Too few samples for too many categories and gradients, i.e., three land use types, five
climate zones, and gradients in soil texture, soil organic matter, and pH. The regressions were not
significant, except for the relationship between pH and microbial diversity [20]. For the earthworm
data, the regressions with 3838 sites were significant but only had an explained variation of about
25% due to, e.g., different sampling protocols, taxonomic identification errors, and missing sampling
dates [21]. In the Dutch soil monitoring with one sampling protocol, the regressions for the earthworm
community had higher explained variations (52% and 61% for abundance and richness, respectively;
Table S1, Supplementary Section). Despite limitations, the data from the EcoFINDERS project covered a
representative part of Europe and better data spanning such a large area were not available. Sampling

https://esdac.jrc.ec.europa.eu/projects/lucas
https://esdac.jrc.ec.europa.eu/projects/lucas
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more sites and harmonization of protocols for sampling and analysis will quickly result in better
regressions and thus better maps.

3.5. Reducing Uncertainty in Modelling and Mapping

Any map will display values for illustrative parameters that are ‘uncertain’ to some extent.
We have shown that the current state of mapping and assessment of soil biodiversity is uncertain in
two aspects and needs two types of verification. First, the spatial resolution in information from real
data is often (much) lower than the spatial resolution we expect the map to provide. Second, large
uncertainty arises from the ‘endpoint problem’, since there is no consensus on how to quantify soil
biodiversity [26,59,60].

Digital soil mapping (DSM) approaches are popular to accommodate the problem of spatial data
with a low resolution [57]. We applied DSM to obtain spatial information with a higher resolution for
the Netherlands and verified the accuracy of the individual attribute maps with independent data
of biological and chemical soil observations. For the Province of Noord-Brabant in the Netherlands,
it seems that the observations for soil biodiversity attributes were, on average, somewhat lower than
was predicted from the regression analysis of the Netherlands, but the differences were not big. In our
opinion, the total difference is limited, and becomes almost insignificant when the 11 attributes used
in this study are combined in one proxy indicator system for soil biodiversity. As a general rule,
the increments to improve any multidimensional model for soil biodiversity with not-yet included
attributes, will decrease when the number of included attributes is increased. From the combination
of multiple attributes in one proxy-indicator system, we conclude that predictions of soil biological
attributes in the Netherlands with the DSM approach are feasible and useful for a first step to assess
the soil biodiversity function in a spatial context.

Currently, there is not yet consensus on how to quantify and assess the soil biodiversity function
in a unified approach [26,59,60]. However, we adopted a proxy-indicator for soil biodiversity, designed
to maximally utilize limited data and information. The notion we used is that any attribute that can be
statistically or mechanistically linked to the soil biodiversity function can be used for quantification, i.e.,
not missing one of the three dimensions in the mental framework for soil biodiversity quantification.
In many soil protection acts, such an approach is already the basis for deriving environmental quality
criteria for ecological risk assessment of soil contamination with species sensitivity distributions
(SSD [61]). When more knowledge on assessing soil biodiversity becomes available, structured
conceptual soil biodiversity models and differential weights might be put in place [9,62].

Although already a reasonable number of relevant attributes was collected in the NSMN, showing
convergence to quantification of the soil biodiversity function, we are aware that there is always
a chance that potentially critical attributes were not part of the models. For example, the NSMN
did not contain indicators for monitoring of, e.g., protists, while fungi were only sampled in the
second monitoring cycle. Bacterial diversity information was also not used for the biodiversity map of
the Netherlands.

Despite the overwhelming complexity of the living soil system and the challenge to select the
‘right’ attributes, we think it is possible to design appropriate, practical, and affordable monitoring
systems for soil biodiversity and habitat provisioning, once our data and knowledge base is developed
to maturity with data from real systems over large areas. Such a reference view on soil biodiversity and
soil biological attributes is appearing now in the Netherlands. Consequently, dedicated proxy-indicator
systems can be designed for specific land uses, soil types, climate zones, and environmental stresses,
which are smaller than the Dutch monitoring system.

4. Conclusions and Prospective

In this study, the feasibility of using soil biological data for assessing and mapping the soil
biodiversity function was demonstrated. Although the model we applied for quantification of soil
biodiversity is conceptually in development, and the realized predictions of soil biological attributes in
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the digital soil mapping approach are statistically optimized, we hypothesize that the maps contribute
to the developments in this area, and we hope to add some value to the worldwide assessment of
soil biodiversity by 2020 as requested by the UN-CBD (COP 14). Improvement of data availability
together with further steps of conceptualization are areas that jointly need attention for constituting to
a knowledge and policy base for soil biodiversity.

Soil biodiversity and habitat provisioning is only one of the soil functions. The EU working
group on mapping and assessing of ecosystems and their services (MAES) is preparing guidelines for
supporting EU member states to reach the targets in the EU biodiversity strategy, i.e., action 5: To map
and assess the state of ecosystems and their services in the national territories [11]. Recently, the EU
commissioned the MAES working group to perform a soil pilot study for preparing guidelines to assess
and map the multi-functionality of soils, i.e., contributions to a bundle of soil ecosystem services [18].
In the H2020 project, LANDMARK tools for assessing and mapping of five overarching soil functions are
developed [39,40]: (1) Soil biodiversity and habitat provisioning (this paper), (2) primary productivity,
(3) water regulation and purification, (4) climate regulation, and (5) nutrient cycling and regulation.
In other studies, sometimes more functions are acknowledged, but often they are addressed in one
index (‘soil health’). As a final remark, multiple soil functions should be represented in the soil
monitoring and assessment for addressing the total natural capital of soils, for instance in LUCAS.

Supplementary Materials: The following Tables are available online at http://www.mdpi.com/2571-8789/3/2/39/s1:
Table S1. General Linearized regression Models (GLMs) of data on selected soil biological attributes in the first
monitoring cycle in the Netherlands Soil Monitoring Network [11]; Table S2. Biological attributes contributing to
the soil biodiversity model for the soil biodiversity map of Europe. Data were obtained from the EU FP7 project
EcoFINDERS [17,21,33].
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