Next Issue
Volume 9, September
Previous Issue
Volume 9, July
 
 

Biology, Volume 9, Issue 8 (August 2020) – 56 articles

Cover Story (view full-size image): The analysis of semen quality is critical in reproductive biology. Although most laboratories use commercial and private computer-assisted sperm analysis systems, in recent years, certain free and open-source software (OSS) alternatives have emerged. OSS can reduce the costs that research groups have to face and may offer important solutions for challenging research endeavors. Due to the open philosophy of OSS, new tools for assessing different parameters related to sperm functionality can be incorporated. In this work, we present an extension of the OpenCASA software, previously developed OSS for sperm quality analysis. In addition to the motility, chemotaxis, viability, and morphometry analysis, the extension will allow researchers to carry out three new analysis: chemotaxis accumulation, plasma, and acrosome membrane integrity and sperm concentration evaluation. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
38 pages, 7592 KiB  
Article
Stress Changes the Resting-State Cortical Flow of Information from Distributed to Frontally Directed Patterns
by Soheil Keshmiri
Biology 2020, 9(8), 236; https://doi.org/10.3390/biology9080236 - 18 Aug 2020
Cited by 3 | Viewed by 3518
Abstract
Despite converging evidence on the involvement of large-scale distributed brain networks in response to stress, the effect of stress on the components of these networks is less clear. Although some studies identify higher regional activities in response to stress, others observe an opposite [...] Read more.
Despite converging evidence on the involvement of large-scale distributed brain networks in response to stress, the effect of stress on the components of these networks is less clear. Although some studies identify higher regional activities in response to stress, others observe an opposite effect in the similar regions. Studies based on synchronized activities and coactivation of these components also yield similar differing results. However, these differences are not necessarily contradictory once we observe the effect of stress on these functional networks in terms of the change in information processing capacity of their components. In the present study, we investigate the utility of such a shift in the analysis of the effect of stress on distributed cortical regions through quantification of the flow of information among them. For this purpose, we use the self-assessed responses of 216 individuals to stress-related questionnaires and systematically select 20 of them whose responses showed significantly higher and lower susceptibility to stress. We then use these 20 individuals’ resting-state multi-channel electroencephalography (EEG) recordings (both Eyes-Closed (EC) and Eyes-Open (EO) settings) and compute the distributed flow of information among their cortical regions using transfer entropy (TE). The contribution of the present study is three-fold. First, it identifies that the stress-susceptibility is characterized by the change in flow of information in fronto-parietal brain network. Second, it shows that these regions are distributed bi-hemispherically and are sufficient to significantly differentiate between the individuals with high versus low stress-susceptibility. Third, it verifies that the high stress-susceptibility is markedly associated with a higher parietal-to-frontal flow of information. These results provide further evidence for the viewpoint in which the brain’s modulation of information is not necessarily accompanied by the change in its regional activity. They further construe the effect of stress in terms of a disturbance that disrupts the flow of information among the brain’s distributed cortical regions. These observations, in turn, suggest that some of the differences in the previous findings perhaps reflect different aspects of impaired distributed brain information processing in response to stress. From a broader perspective, these results posit the use of TE as a potential diagnostic/prognostic tool in identification of the effect of stress on distributed brain networks that are involved in stress-response. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

15 pages, 4552 KiB  
Article
ACE2 Protein Landscape in the Head and Neck Region: The Conundrum of SARS-CoV-2 Infection
by Géraldine Descamps, Laurine Verset, Anne Trelcat, Claire Hopkins, Jérome R. Lechien, Fabrice Journe and Sven Saussez
Biology 2020, 9(8), 235; https://doi.org/10.3390/biology9080235 - 18 Aug 2020
Cited by 41 | Viewed by 4289
Abstract
The coronavirus pandemic raging worldwide since December 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which invades human cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Although it has already been identified in many organs, ACE2 expression remains largely [...] Read more.
The coronavirus pandemic raging worldwide since December 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which invades human cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Although it has already been identified in many organs, ACE2 expression remains largely unknown in the head and neck (HN) sphere. Thus, this study aims to investigate its protein expression in several sites of the upper aerodigestive tract in order to highlight potential routes of infection. We compared ACE2 immunohistochemical expression between 70 paraffin-embedded specimens with two different antibodies and reported the quantified expression in each histological location. Surprisingly, we obtained different results depending on the antibody, an absence of labeling having been observed with a monoclonal antibody raised against the extracellular domain, whereas the polyclonal, against the cytoplasmic part of the protein, revealed enriched ACE2 expression, particularly in sinuses, vocal cords, salivary glands and oral cavity epithelial cells. The interpretation of these discordant results has brought several exciting lines of reflection. In conclusion, this study provides possible routes of entry for the SARS-CoV-2 in HN region and, above all, has led us to encourage caution when studying the ACE2 expression which is currently at the center of all attention. Full article
(This article belongs to the Special Issue Molecular Targets and Targeting in Biomedical Sciences)
Show Figures

Figure 1

14 pages, 833 KiB  
Review
Conservation of Cell Communication Systems in Invertebrate Host–Defence Mechanisms: Possible Role in Immunity and Disease
by Manon Auguste, Teresa Balbi, Caterina Ciacci and Laura Canesi
Biology 2020, 9(8), 234; https://doi.org/10.3390/biology9080234 - 18 Aug 2020
Cited by 18 | Viewed by 3212
Abstract
Innate immunity is continuously revealing multiple and highly conserved host–defence mechanisms. Studies on mammalian immunocytes are showing different communication systems that may play a role in coordinating innate immune responses also in invertebrates. Extracellular traps (ETs) are an immune response by which cells [...] Read more.
Innate immunity is continuously revealing multiple and highly conserved host–defence mechanisms. Studies on mammalian immunocytes are showing different communication systems that may play a role in coordinating innate immune responses also in invertebrates. Extracellular traps (ETs) are an immune response by which cells release net-like material, including DNA, histones and proteins. ETs are thought to immobilise and kill microorganisms, but are also involved in inflammation and autoimmune disease. Immune cells are also known to communicate through extracellular vesicles secreted in the extracellular environment or exosomes, which can carry a variety of different signalling molecules. Tunnelling nanotubes (TNTs) represent a direct cell-to-cell communication over a long distance, that allow for bi- or uni-directional transfer of cellular components between cells. Their functional role in a number of physio-pathological processes, including immune responses and pathogen transfer, has been underlined. Although ETs, exosomes, and TNTs have been described in invertebrate species, their possible role in immune responses is not fully understood. In this work, available data on these communication systems are summarised, in an attempt to provide basic information for further studies on their relevance in invertebrate immunity and disease. Full article
Show Figures

Figure 1

17 pages, 297 KiB  
Review
Antimicrobial Peptides of Salmonid Fish: From Form to Function
by Sascha R. Brunner, Joseph F. A. Varga and Brian Dixon
Biology 2020, 9(8), 233; https://doi.org/10.3390/biology9080233 - 18 Aug 2020
Cited by 28 | Viewed by 5177
Abstract
Antimicrobial peptides (AMPs) are small, usually cationic, and amphiphilic molecules that play a crucial role in molecular and cellular host defense against pathogens, tissue damage, and infection. AMPs are present in all metazoans and several have been discovered in teleosts. Some teleosts, such [...] Read more.
Antimicrobial peptides (AMPs) are small, usually cationic, and amphiphilic molecules that play a crucial role in molecular and cellular host defense against pathogens, tissue damage, and infection. AMPs are present in all metazoans and several have been discovered in teleosts. Some teleosts, such as salmonids, have undergone whole genome duplication events and retained a diverse AMP repertoire. Salmonid AMPs have also been shown to possess diverse and potent antibacterial, antiviral, and antiparasitic activity and are induced by a variety of factors, including dietary components and specific molecules also known as pathogen-associated molecular patterns (PAMPs), which may activate downstream signals to initiate transcription of AMP genes. Moreover, a multitude of cell lines have been established from various salmonid species, making it possible to study host-pathogen interactions in vitro, and several of these cell lines have been shown to express various AMPs. In this review, the structure, function, transcriptional regulation, and immunomodulatory role of salmonid AMPs are highlighted in health and disease. It is important to characterize and understand how salmonid AMPs function as this may lead to a better understanding of host-pathogen interactions with implications for aquaculture and medicine. Full article
(This article belongs to the Collection Fish Immunity: From Genomes to Functional Understanding)
22 pages, 4117 KiB  
Article
Calligonum polygonoides L. Shrubs Provide Species-Specific Facilitation for the Understory Plants in Coastal Ecosystem
by Ahmed M. Abd-ElGawad, Younes M. Rashad, Ahmed M. Abdel-Azeem, Sami A. Al-Barati, Abdulaziz M. Assaeed and Amr M. Mowafy
Biology 2020, 9(8), 232; https://doi.org/10.3390/biology9080232 - 17 Aug 2020
Cited by 12 | Viewed by 3843
Abstract
Plant facilitation has a pivotal role in regulating species coexistence, particularly under arid environments. The present study aimed to evaluate the facilitative effect of Calligonum polygonoides L. on its understory plants in coastal habitat. Forty Calligonum shrubs were investigated and the environmental data [...] Read more.
Plant facilitation has a pivotal role in regulating species coexistence, particularly under arid environments. The present study aimed to evaluate the facilitative effect of Calligonum polygonoides L. on its understory plants in coastal habitat. Forty Calligonum shrubs were investigated and the environmental data (soil temperature, moisture, pH, salinity, carbon and nitrogen content, and light intensity), vegetation composition, and diversity of associated species were recorded under- and outside canopies. Eight of the most frequent understory species were selected for evaluating their response to the facilitative effect of C. polygonoides. Bioactive ingredients of Calligonum roots were analyzed using gas chromatography-mass spectrometry (GC-MS), and mycorrhizal biodiversity in their rhizosphere soil was also assessed. The effect of Calligonum on understory plants ranged between facilitation and inhibition in an age-dependent manner. Old shrubs facilitated 18 and inhibited 18 associated species, while young shrubs facilitated 13 and inhibited 9 species. Calligonum ameliorated solar radiation and high-temperature stresses for the under canopy plants. Moreover, soil moisture was increased by 509.52% and 85.71%, while salinity was reduced by 47.62% and 23.81% under old and young shrubs, respectively. Soil contents of C and N were increased under canopy. This change in the microenvironment led to photosynthetic pigments induction in the majority of understory species. However, anthocyanin, proline contents, and antioxidant enzyme activities were reduced in plants under canopy. Thirteen mycorrhizal fungal species were identified in the rhizospheric soil of Calligonum with the predominance of Funneliformis mosseae. Thirty-one compounds were identified in Calligonum root extract in which pyrogallol and palmitic acid, which have antimicrobial and allelopathic activities, were the major components. The obtained results demonstrated that facilitation provided by Calligonum is mediated with multiple mechanisms and included a set of interrelated scenarios that took place in a species-specific manner. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Onset and Progression of Diseases)
Show Figures

Figure 1

15 pages, 1171 KiB  
Article
Polyphenol Profile and Biological Activity Comparisons of Different Parts of Astragalus macrocephalus subsp. finitimus from Turkey
by Cengiz Sarikurkcu and Gokhan Zengin
Biology 2020, 9(8), 231; https://doi.org/10.3390/biology9080231 - 17 Aug 2020
Cited by 17 | Viewed by 2742
Abstract
The members of the genus Astragalus have great interest as traditional drugs in several folk systems including Turkey. In this sense, the present paper was aimed to explore the biological properties and chemical profiles of different parts (aerial parts, leaves, flowers, stems, and [...] Read more.
The members of the genus Astragalus have great interest as traditional drugs in several folk systems including Turkey. In this sense, the present paper was aimed to explore the biological properties and chemical profiles of different parts (aerial parts, leaves, flowers, stems, and roots) of A. macrocephalus subsp. finitimus. Antioxidant (radical quenching, reducing power, and metal chelating) and enzyme inhibitory (α-amylase and tyrosinase) effects were investigated for biological properties. Regarding chemical profiles, individual phenolic compounds were detected by LC-MS, as well as total amounts. The leaves extract exhibited the strongest antioxidant abilities when compared with other parts. However, flowers extract had the best metal chelating ability. Hyperoside, apigenin, p-coumaric, and ferulic acids were identified as main compounds in the tested parts. Regarding enzyme inhibitory properties, tyrosinase inhibitory effects varied from IC50: 1.02 to 1.41 mg/mL. In addition, the best amylase inhibition effect was observed by leaves (3.36 mg/mL), followed by aerial parts, roots, stems, and flowers. As a result, from multivariate analysis, the tested parts were classified in three cluster. Summing up the results, it can be concluded that A. macrocephalus subsp. finitimus could be a precious source of natural bioactive agents in pharmaceutical, nutraceutical, and cosmeceutical applications. Full article
(This article belongs to the Special Issue Bioactivity of Medicinal Plants and Extracts)
Show Figures

Figure 1

21 pages, 8238 KiB  
Article
Physioxia Expanded Bone Marrow Derived Mesenchymal Stem Cells Have Improved Cartilage Repair in an Early Osteoarthritic Focal Defect Model
by Girish Pattappa, Jonas Krueckel, Ruth Schewior, Dustin Franke, Alexander Mench, Matthias Koch, Johannes Weber, Siegmund Lang, Christian G. Pfeifer, Brian Johnstone, Denitsa Docheva, Volker Alt, Peter Angele and Johannes Zellner
Biology 2020, 9(8), 230; https://doi.org/10.3390/biology9080230 - 17 Aug 2020
Cited by 16 | Viewed by 2933
Abstract
Focal early osteoarthritis (OA) or degenerative lesions account for 60% of treated cartilage defects each year. The current cell-based regenerative treatments have an increased failure rate for treating degenerative lesions compared to traumatic defects. Mesenchymal stem cells (MSCs) are an alternative cell source [...] Read more.
Focal early osteoarthritis (OA) or degenerative lesions account for 60% of treated cartilage defects each year. The current cell-based regenerative treatments have an increased failure rate for treating degenerative lesions compared to traumatic defects. Mesenchymal stem cells (MSCs) are an alternative cell source for treating early OA defects, due to their greater chondrogenic potential, compared to early OA chondrocytes. Low oxygen tension or physioxia has been shown to enhance MSC chondrogenic matrix content and could improve functional outcomes of regenerative therapies. The present investigation sought to develop a focal early OA animal model to evaluate cartilage regeneration and hypothesized that physioxic MSCs improve in vivo cartilage repair in both, post-trauma and focal early OA defects. Using a rabbit model, a focal defect was created, that developed signs of focal early OA after six weeks. MSCs cultured under physioxia had significantly enhanced in vitro MSC chondrogenic GAG content under hyperoxia with or without the presence of interleukin-1β (IL-1β). In both post-traumatic and focal early OA defect models, physioxic MSC treatment demonstrated a significant improvement in cartilage repair score, compared to hyperoxic MSCs and respective control defects. Future investigations will seek to understand whether these results are replicated in large animal models and the underlying mechanisms involved in in vivo cartilage regeneration. Full article
(This article belongs to the Special Issue Biology of Osteoarthritis)
Show Figures

Figure 1

25 pages, 2656 KiB  
Review
The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material
by Andrea Arrones, Santiago Vilanova, Mariola Plazas, Giulio Mangino, Laura Pascual, María José Díez, Jaime Prohens and Pietro Gramazio
Biology 2020, 9(8), 229; https://doi.org/10.3390/biology9080229 - 16 Aug 2020
Cited by 25 | Viewed by 7076
Abstract
The compelling need to increase global agricultural production requires new breeding approaches that facilitate exploiting the diversity available in the plant genetic resources. Multi-parent advanced generation inter-cross (MAGIC) populations are large sets of recombinant inbred lines (RILs) that are a genetic mosaic of [...] Read more.
The compelling need to increase global agricultural production requires new breeding approaches that facilitate exploiting the diversity available in the plant genetic resources. Multi-parent advanced generation inter-cross (MAGIC) populations are large sets of recombinant inbred lines (RILs) that are a genetic mosaic of multiple founder parents. MAGIC populations display emerging features over experimental bi-parental and germplasm populations in combining significant levels of genetic recombination, a lack of genetic structure, and high genetic and phenotypic diversity. The development of MAGIC populations can be performed using “funnel” or “diallel” cross-designs, which are of great relevance choosing appropriate parents and defining optimal population sizes. Significant advances in specific software development are facilitating the genetic analysis of the complex genetic constitutions of MAGIC populations. Despite the complexity and the resources required in their development, due to their potential and interest for breeding, the number of MAGIC populations available and under development is continuously growing, with 45 MAGIC populations in different crops being reported here. Though cereals are by far the crop group where more MAGIC populations have been developed, MAGIC populations have also started to become available in other crop groups. The results obtained so far demonstrate that MAGIC populations are a very powerful tool for the dissection of complex traits, as well as a resource for the selection of recombinant elite breeding material and cultivars. In addition, some new MAGIC approaches that can make significant contributions to breeding, such as the development of inter-specific MAGIC populations, the development of MAGIC-like populations in crops where pure lines are not available, and the establishment of strategies for the straightforward incorporation of MAGIC materials in breeding pipelines, have barely been explored. The evidence that is already available indicates that MAGIC populations will play a major role in the coming years in allowing for impressive gains in plant breeding for developing new generations of dramatically improved cultivars. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

13 pages, 5102 KiB  
Article
Protoplast Isolation and Shoot Regeneration from Protoplast-Derived Callus of Petunia hybrida Cv. Mirage Rose
by Hyun Hee Kang, Aung Htay Naing and Chang Kil Kim
Biology 2020, 9(8), 228; https://doi.org/10.3390/biology9080228 - 16 Aug 2020
Cited by 20 | Viewed by 7698
Abstract
Despite the increasing use of protoplasts in plant biotechnology research, shoot regeneration from protoplasts remains challenging. In this study, we investigated the factors involved in protoplast isolation, callus induction, and shoot regeneration in Petunia hybrida cv. Mirage Rose. The following conditions were found [...] Read more.
Despite the increasing use of protoplasts in plant biotechnology research, shoot regeneration from protoplasts remains challenging. In this study, we investigated the factors involved in protoplast isolation, callus induction, and shoot regeneration in Petunia hybrida cv. Mirage Rose. The following conditions were found to be most optimal for protoplast yield and viability: 0.6 M mannitol, 2.0% cellulase, and 6 h digestion time. A plating density of 10 × 104 protoplasts/mL under osmoticum condition (0.58 M mannitol) showed high microcolony viability in liquid culture. The Kao and Michayluk medium was found to be appropriate for callus proliferation from microcalli under a 16-h light photoperiod. Calli cultured in Murashige and Skoog medium containing 1.0 mg/L 6-benzylaminopurine and 0.2 mg/L 3-indole butyric acid showed the highest shoot regeneration frequency and number of shoots obtained per explant. Random amplification of polymorphic DNA analysis showed that the protoplast-derived shoots exhibited the same banding patterns as those of donor plants. Collectively, these findings can contribute to solving problems encountered in protoplast isolation and shoot regeneration in other petunia cultivars and related species. As the protocol developed by us is highly reproducible, it can be applied in biotechnology research on P. hybrida cv. Mirage Rose. Full article
Show Figures

Figure 1

14 pages, 2219 KiB  
Article
Noninvasive and Safe Cell Viability Assay for Breast Cancer MCF-7 Cells Using Natural Food Pigment
by Kyohei Yamashita, Ryoma Tagawa, Yoshikazu Higami and Eiji Tokunaga
Biology 2020, 9(8), 227; https://doi.org/10.3390/biology9080227 - 14 Aug 2020
Cited by 8 | Viewed by 6526
Abstract
A dye exclusion test (DET) was performed to determine the viability of human breast cancer cells MCF-7, using natural food pigments as compared with trypan blue (TB), a typical synthetic dye for DET known to exhibit teratogenicity and cytotoxicity. We demonstrated that Monascus [...] Read more.
A dye exclusion test (DET) was performed to determine the viability of human breast cancer cells MCF-7, using natural food pigments as compared with trypan blue (TB), a typical synthetic dye for DET known to exhibit teratogenicity and cytotoxicity. We demonstrated that Monascus pigment (MP) is noninvasive to living cells and can effectively stain only dead cells. This study is the first verification of the applicability of MP to cancer cells. The appropriate MP concentration was 0.4% (0.02% as the concentration of pure MP) and all the dead cells were stained within 10 min. We found that the cell proliferation or the reduced nicotinamide adenine dinucleotide (NADH) activity of living cells was maintained over 48 h. Although 0.1% TB did not show an increase in dead cells, a marked decrease in NADH activity was confirmed. In addition, even when MP coexisted with cisplatin, staining of dead cells was maintained for 47 h, indicating stability to drugs (reagents). The cost of MP is estimated to be about 1/10 of TB. The fact that MP can be used as a cell viability determination reagent for Euglena and Paramecium, as shown in preceding papers, and also for MCF-7, as shown in this paper, indicates the possibility of application in more cells of different species. Full article
Show Figures

Figure 1

16 pages, 1427 KiB  
Communication
Inverted Covariate Effects for First versus Mutated Second Wave Covid-19: High Temperature Spread Biased for Young
by Hervé Seligmann, Siham Iggui, Mustapha Rachdi, Nicolas Vuillerme and Jacques Demongeot
Biology 2020, 9(8), 226; https://doi.org/10.3390/biology9080226 - 14 Aug 2020
Cited by 25 | Viewed by 4146
Abstract
(1) Background: Here, we characterize COVID-19’s waves, following a study presenting negative associations between first wave COVID-19 spread parameters and temperature. (2) Methods: Visual examinations of daily increases in confirmed COVID-19 cases in 124 countries, determined first and second waves in 28 countries. [...] Read more.
(1) Background: Here, we characterize COVID-19’s waves, following a study presenting negative associations between first wave COVID-19 spread parameters and temperature. (2) Methods: Visual examinations of daily increases in confirmed COVID-19 cases in 124 countries, determined first and second waves in 28 countries. (3) Results: The first wave spread rate increases with country mean elevation, median population age, time since wave onset, and decreases with temperature. Spread rates decrease above 1000 m, indicating high ultraviolet lights (UVs) decrease the spread rate. The second wave associations are the opposite, i.e., spread increases with temperature and young age, and decreases with time since wave onset. The earliest second waves started 5–7 April at mutagenic high elevations (Armenia, Algeria). The second waves also occurred at the warm-to-cold season transition (Argentina, Chile). Second vs. first wave spread decreases in most (77%) countries. In countries with late first wave onset, spread rates better fit second than first wave-temperature patterns. In countries with ageing populations (for example, Japan, Sweden, and Ukraine), second waves only adapted to spread at higher temperatures, not to infect the young. (4) Conclusions: First wave viruses evolved towards lower spread. Second wave mutant COVID-19 strain(s) adapted to higher temperature, infecting younger ages and replacing (also in cold conditions) first wave COVID-19 strains. Counterintuitively, low spread strains replace high spread strains, rendering prognostics and extrapolations uncertain. Full article
(This article belongs to the Special Issue Theories and Models on COVID-19 Epidemics)
Show Figures

Figure 1

12 pages, 2644 KiB  
Article
Properties of Arabinogalactan Proteins (AGPs) in Apple (Malus × Domestica) Fruit at Different Stages of Ripening
by Agata Leszczuk, Justyna Cybulska, Tomasz Skrzypek and Artur Zdunek
Biology 2020, 9(8), 225; https://doi.org/10.3390/biology9080225 - 14 Aug 2020
Cited by 18 | Viewed by 2777
Abstract
Arabinogalactan proteins (AGPs) are constituents of the cell wall–plasma membrane continuum in fruit tissue. The aim of the study was to characterise AGPs contained in fruit by determination of their chemical structure and morphological properties. The results were obtained from in and ex [...] Read more.
Arabinogalactan proteins (AGPs) are constituents of the cell wall–plasma membrane continuum in fruit tissue. The aim of the study was to characterise AGPs contained in fruit by determination of their chemical structure and morphological properties. The results were obtained from in and ex situ investigations and a comparative analysis of AGPs present in Malus × domestica fruit at different stages of ripening from green fruit through the mature stage to over-ripening during fruit storage. The HPLC and colorimetric methods were used for analyses of the composition of monosaccharides and proteins in AGPs extracted from fruit. We have found that AGPs from fruit mainly consists of carbohydrate chains composed predominantly of arabinose, galactose, glucose, galacturonic acid, and xylose. The protein moiety accounts for 3.15–4.58%, which depends on the various phases of ripening. Taken together, our results show that the structural and morphological properties of AGPs and calcium concentration in AGPs are related to the progress of ripening, which is correlated with proper fruit cell wall assembly. In line with the existing knowledge, our data confirmed the typical carbohydrate composition of AGPs and may be the basis for studies regarding their presumed properties of binding calcium ions. Full article
Show Figures

Figure 1

17 pages, 1298 KiB  
Review
Influence of Bone Definition and Finite Element Parameters in Bone and Dental Implants Stress: A Literature Review
by María Prados-Privado, Carlos Martínez-Martínez, Sergio A. Gehrke and Juan Carlos Prados-Frutos
Biology 2020, 9(8), 224; https://doi.org/10.3390/biology9080224 - 14 Aug 2020
Cited by 10 | Viewed by 3417
Abstract
Bone plays an important role in dental implant treatment success. The goal of this literature review is to analyze the influence of bone definition and finite element parameters on stress in dental implants and bone in numerical studies. A search was conducted of [...] Read more.
Bone plays an important role in dental implant treatment success. The goal of this literature review is to analyze the influence of bone definition and finite element parameters on stress in dental implants and bone in numerical studies. A search was conducted of Pubmed, Science Direct and LILACS, and two independent reviewers performed the data extraction. The quality of the selected studies was assessed using the Cochrane Handbook tool for clinical trials. Seventeen studies were included. Titanium was the most commonly-used material in dental implants. The magnitude of the applied loads varied from 15 to 300 N with a mean of 182 N. Complete osseointegration was the most common boundary condition. Evidence from this review suggests that bone is commonly defined as an isotropic material, despite being an anisotropic tissue, and that it is analyzed as a ductile material, instead of as a fragile material. In addition, and in view of the data analyzed in this review, it can be concluded that there is no standardization for conducting finite element studies in the field of dentistry. Convergence criteria are only detailed in two of the studies included in this review, although they are a key factor in obtaining accurate results in numerical studies. It is therefore necessary to implement a methodology that indicates which parameters a numerical simulation must include, as well as how the results should be analyzed. Full article
(This article belongs to the Special Issue New Trends in Bioengineering in Osseointegration and Dental Implants)
Show Figures

Figure 1

26 pages, 432 KiB  
Review
Botanical Products in the Treatment and Control of Schistosomiasis: Recent Studies and Distribution of Active Plant Resources According to Affected Regions
by Ricardo Diego Duarte Galhardo de Albuquerque, Mohamad Fawzi Mahomoodally, Devina Lobine, Shanno Suroowan and Kannan RR Rengasamy
Biology 2020, 9(8), 223; https://doi.org/10.3390/biology9080223 - 13 Aug 2020
Cited by 8 | Viewed by 4057
Abstract
Schistosomiasis, a parasitic disease caused by trematodes of the genus Schistosoma, is the second most prevalent parasitic disease in the world. It affects around 200 million people. Clinical treatment, prophylaxis, and prevention are performed in countries susceptible to schistosomiasis. In the pharmacological [...] Read more.
Schistosomiasis, a parasitic disease caused by trematodes of the genus Schistosoma, is the second most prevalent parasitic disease in the world. It affects around 200 million people. Clinical treatment, prophylaxis, and prevention are performed in countries susceptible to schistosomiasis. In the pharmacological treatment for an acute form of schistosomiasis, the use of antiparasitics, mainly praziquantel, is more common. As an alternative way, prevention methods such as reducing the population of intermediate hosts (mollusks) with molluscicides are important in the control of this disease by interrupting the biological cycle of this etiological parasite. Despite the importance of pharmacological agents and molluscicides, they have side effects and environmental toxicity. In addition, they can lead to the development of resistance enhancing of parasites, and lead to the search for new and effective drugs, including resources of vegetal origin, which in turn, are abundant in the affected countries. Thus, the purpose of this review is to summarize recent studies on botanical products with potential for the control of schistosomiasis, including anti-Schistosoma and molluscicide activities. In addition, species and plant derivatives according to their origin or geographical importance indicating a possible utility of local resources for countries most affected by the disease are presented. Full article
(This article belongs to the Special Issue Bioactivity of Medicinal Plants and Extracts)
17 pages, 1377 KiB  
Article
Artificial Neural Networks Model for Predicting Type 2 Diabetes Mellitus Based on VDR Gene FokI Polymorphism, Lipid Profile and Demographic Data
by Ma’mon M. Hatmal, Salim M. Abderrahman, Wajeha Nimer, Zaynab Al-Eisawi, Hamzeh J. Al-Ameer, Mohammad A. I. Al-Hatamleh, Rohimah Mohamud and Walhan Alshaer
Biology 2020, 9(8), 222; https://doi.org/10.3390/biology9080222 - 13 Aug 2020
Cited by 13 | Viewed by 3597
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease associated with many genetic polymorphisms; among them is the FokI polymorphism in the vitamin D receptor (VDR) gene. In this case-control study, samples from 82 T2DM patients and 82 healthy controls were [...] Read more.
Type 2 diabetes mellitus (T2DM) is a multifactorial disease associated with many genetic polymorphisms; among them is the FokI polymorphism in the vitamin D receptor (VDR) gene. In this case-control study, samples from 82 T2DM patients and 82 healthy controls were examined to investigate the association of the FokI polymorphism and lipid profile with T2DM in the Jordanian population. DNA was extracted from blood and genotyped for the FokI polymorphism by polymerase chain reaction (PCR) and DNA sequencing. Lipid profile and fasting blood sugar were also measured. There were significant differences in high-density lipoprotein (HDL) cholesterol and triglyceride levels between T2DM and control samples. Frequencies of the FokI polymorphism (CC, CT and TT) were determined in T2DM and control samples and were not significantly different. Furthermore, there was no significant association between the FokI polymorphism and T2DM or lipid profile. A feed-forward neural network (FNN) was used as a computational platform to predict the persons with diabetes based on the FokI polymorphism, lipid profile, gender and age. The accuracy of prediction reached 88% when all parameters were included, 81% when the FokI polymorphism was excluded, and 72% when lipids were only included. This is the first study investigating the association of the VDR gene FokI polymorphism with T2DM in the Jordanian population, and it showed negative association. Diabetes was predicted with high accuracy based on medical data using an FNN. This highlights the great value of incorporating neural network tools into large medical databases and the ability to predict patient susceptibility to diabetes. Full article
(This article belongs to the Special Issue Mechanistic Insights into the Pathogenesis of Type 2 Diabetes)
Show Figures

Figure 1

15 pages, 3167 KiB  
Article
The Teleost Thymus in Health and Disease: New Insights from Transcriptomic and Histopathological Analyses of Turbot, Scophthalmus maximus
by Paolo Ronza, Diego Robledo, Ana Paula Losada, Roberto Bermúdez, Belén G. Pardo, Paulino Martínez and María Isabel Quiroga
Biology 2020, 9(8), 221; https://doi.org/10.3390/biology9080221 - 13 Aug 2020
Cited by 9 | Viewed by 3054
Abstract
The thymus is a primary lymphoid organ that plays a pivotal role in the adaptive immune system. The immunobiology of the thymus in fish is considered to be similar to that of mammals, but it is actually poorly characterized in several cultured teleost [...] Read more.
The thymus is a primary lymphoid organ that plays a pivotal role in the adaptive immune system. The immunobiology of the thymus in fish is considered to be similar to that of mammals, but it is actually poorly characterized in several cultured teleost species. In particular, while investigations in human and veterinary medicine have highlighted that the thymus can be affected by different pathological conditions, little is known about its response during disease in fish. To better understand the role of the thymus under physiological and pathological conditions, we conducted a study in turbot (Scophthalmus maximus), a commercially valuable flatfish species, combining transcriptomic and histopathological analyses. The myxozoan parasite Enteromyxum scophthalmi, which represents a major challenge to turbot production, was used as a model of infection. The thymus tissues of healthy fish showed overrepresented functions related to its immunological role in T-cell development and maturation. Large differences were observed between the transcriptomes of control and severely infected fish. Evidence of inflammatory response, apoptosis modulation, and declined thymic function associated with loss of cellularity was revealed by both genomic and morphopathological analyses. This study presents the first description of the turbot thymus transcriptome and provides novel insights into the role of this organ in teleosts’ immune responses. Full article
(This article belongs to the Special Issue Transcriptome and Genome Analyses Applied to Aquaculture Research)
Show Figures

Figure 1

26 pages, 3332 KiB  
Article
Mathematical Parameters of the COVID-19 Epidemic in Brazil and Evaluation of the Impact of Different Public Health Measures
by Renato M. Cotta, Carolina P. Naveira-Cotta and Pierre Magal
Biology 2020, 9(8), 220; https://doi.org/10.3390/biology9080220 - 12 Aug 2020
Cited by 20 | Viewed by 3733
Abstract
A SIRU-type epidemic model is employed for the prediction of the COVID-19 epidemy evolution in Brazil, and analyze the influence of public health measures on simulating the control of this infectious disease. The proposed model allows for a time variable functional form of [...] Read more.
A SIRU-type epidemic model is employed for the prediction of the COVID-19 epidemy evolution in Brazil, and analyze the influence of public health measures on simulating the control of this infectious disease. The proposed model allows for a time variable functional form of both the transmission rate and the fraction of asymptomatic infectious individuals that become reported symptomatic individuals, to reflect public health interventions, towards the epidemy control. An exponential analytical behavior for the accumulated reported cases evolution is assumed at the onset of the epidemy, for explicitly estimating initial conditions, while a Bayesian inference approach is adopted for the estimation of parameters by employing the direct problem model with the data from the first phase of the epidemy evolution, represented by the time series for the reported cases of infected individuals. The evolution of the COVID-19 epidemy in China is considered for validation purposes, by taking the first part of the dataset of accumulated reported infectious individuals to estimate the related parameters, and retaining the rest of the evolution data for direct comparison with the predicted results. Then, the available data on reported cases in Brazil from 15 February until 29 March, is used for estimating parameters and then predicting the first phase of the epidemy evolution from these initial conditions. The data for the reported cases in Brazil from 30 March until 23 April are reserved for validation of the model. Then, public health interventions are simulated, aimed at evaluating the effects on the disease spreading, by acting on both the transmission rate and the fraction of the total number of the symptomatic infectious individuals, considering time variable exponential behaviors for these two parameters. This first constructed model provides fairly accurate predictions up to day 65 below 5% relative deviation, when the data starts detaching from the theoretical curve. From the simulated public health intervention measures through five different scenarios, it was observed that a combination of careful control of the social distancing relaxation and improved sanitary habits, together with more intensive testing for isolation of symptomatic cases, is essential to achieve the overall control of the disease and avoid a second more strict social distancing intervention. Finally, the full dataset available by the completion of the present work is employed in redefining the model to yield updated epidemy evolution estimates. Full article
(This article belongs to the Special Issue Theories and Models on COVID-19 Epidemics)
Show Figures

Figure 1

9 pages, 4803 KiB  
Article
Quercetin Caused Redox Homeostasis Imbalance and Activated the Kynurenine Pathway
by Oluyomi Stephen Adeyemi, Chinemerem Ebugosi, Oghenerobor Benjamin Akpor, Helal F. Hetta, Sarah Al-Rashed, David Adeiza Otohinoyi, Damilare Rotimi, Akinyomade Owolabi, Ikponmwosa Owen Evbuomwan and Gaber El-Saber Batiha
Biology 2020, 9(8), 219; https://doi.org/10.3390/biology9080219 - 10 Aug 2020
Cited by 10 | Viewed by 3274
Abstract
The search for new and better antimicrobial therapy is a continuous effort. Quercetin is a polyphenol with promising antimicrobial properties. However, the understanding of its antimicrobial mechanism is limited. In this study, we investigated the biochemical mechanistic action of quercetin as an antibacterial [...] Read more.
The search for new and better antimicrobial therapy is a continuous effort. Quercetin is a polyphenol with promising antimicrobial properties. However, the understanding of its antimicrobial mechanism is limited. In this study, we investigated the biochemical mechanistic action of quercetin as an antibacterial compound. Isolates of Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus were initially exposed to quercetin for antibacterial evaluation. Subsequently, S. aureus (Gram-positive) and E. coli (Gram-negative) cells were exposed to quercetin with or without ascorbic acid, and cells were harvested for selected biochemical assays. These assays included redox homeostasis (lipid peroxidation, total thiol, total antioxidant capacity), nitric oxide, and kynurenine concentration as well as DNA fragmentation. The results revealed that quercetin caused lipid peroxidation in the bacterial isolates. Lipid peroxidation may indicate ensuing oxidative stress resulting from quercetin treatment. Furthermore, tryptophan degradation to kynurenine was activated by quercetin in S. aureus but not in E. coli, suggesting that local L-tryptophan concentration might become limiting for bacterial growth. These findings, considered together, may indicate that quercetin restricts bacterial growth by promoting oxidative cellular stress, as well as by reducing the local L-tryptophan availability by activating the kynurenine pathway, thus contributing to our understanding of the molecular mechanism of the antimicrobial action of quercetin. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Onset and Progression of Diseases)
Show Figures

Figure 1

16 pages, 2711 KiB  
Article
Toad Venom Antiproliferative Activities on Metastatic Melanoma: Bio-Guided Fractionation and Screening of the Compounds of Two Different Venoms
by Laura Soumoy, Mathilde Wells, Ahmad Najem, Mohammad Krayem, Ghanem Ghanem, Stéphanie Hambye, Sven Saussez, Bertrand Blankert and Fabrice Journe
Biology 2020, 9(8), 218; https://doi.org/10.3390/biology9080218 - 10 Aug 2020
Cited by 8 | Viewed by 2515
Abstract
Melanoma is the most common cancer in young adults, with a constantly increasing incidence. Metastatic melanoma is a very aggressive cancer with a 5-year survival rate of about 22−25%. This is, in most cases, due to a lack of therapies which are effective [...] Read more.
Melanoma is the most common cancer in young adults, with a constantly increasing incidence. Metastatic melanoma is a very aggressive cancer with a 5-year survival rate of about 22−25%. This is, in most cases, due to a lack of therapies which are effective on the long term. Hence, it is crucial to find new therapeutic agents to increase patient survival. Toad venoms are a rich source of potentially pharmaceutically active compounds and studies have highlighted their possible effect on cancer cells. We focused on the venoms of two different toad species: Bufo bufo and Rhinella marina. We screened the venom crude extracts, the fractions from crude extracts and isolated biomolecules by studying their antiproliferative properties on melanoma cells aiming to determine the compound or the combination of compounds with the highest antiproliferative effect. Our results indicated strong antiproliferative capacities of toad venoms on melanoma cells. We found that these effects were mainly due to bufadienolides that are cardiotonic steroids potentially acting on the Na+/K+ ATPase pump which is overexpressed in melanoma. Finally, our results indicated that bufalin alone was the most interesting compound among the isolated bufadienolides because it had the highest antiproliferative activity on melanoma cells. Full article
(This article belongs to the Special Issue Molecular Targets and Targeting in Biomedical Sciences)
Show Figures

Figure 1

28 pages, 2006 KiB  
Review
Diatoms for Carbon Sequestration and Bio-Based Manufacturing
by Deepak Sethi, Thomas O. Butler, Faqih Shuhaili and Seetharaman Vaidyanathan
Biology 2020, 9(8), 217; https://doi.org/10.3390/biology9080217 - 10 Aug 2020
Cited by 24 | Viewed by 8091
Abstract
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic [...] Read more.
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic diversity exhibited by this group of photosynthetic organisms provides avenues to redirect the captured carbon into products of value. These include lipids, omega-3 fatty acids, pigments, antioxidants, exopolysaccharides, sulphated polysaccharides, and other valuable metabolites that can be produced in environmentally sustainable bio-manufacturing processes. To realize the potential of diatoms, expansion of our knowledge of carbon supply, CO2 uptake and fixation by these organisms, in conjunction with ways to enhance metabolic routing of the fixed carbon to products of value is required. In this review, current knowledge is explored, with an evaluation of the potential of diatoms for carbon capture and bio-based manufacturing. Full article
(This article belongs to the Special Issue The Molecular Life of Diatoms: From Genes to Ecosystems)
Show Figures

Figure 1

15 pages, 3402 KiB  
Article
Characterization of Insulin-Like Growth Factor Binding Protein-5 (IGFBP-5) Gene and Its Potential Roles in Ontogenesis in the Pacific Abalone, Haliotis discus hannai
by Md. Rajib Sharker, Soo Cheol Kim, Shaharior Hossen and Kang Hee Kho
Biology 2020, 9(8), 216; https://doi.org/10.3390/biology9080216 - 09 Aug 2020
Cited by 7 | Viewed by 2478
Abstract
Insulin-like growth factor binding protein family is known to be involved in regulating biological actions of insulin-like growth factors (IGFs). In the present study, a full-length cDNA encoding the IGFBP-5 gene was cloned and characterized from the cerebral ganglion of Haliotis discus hannai [...] Read more.
Insulin-like growth factor binding protein family is known to be involved in regulating biological actions of insulin-like growth factors (IGFs). In the present study, a full-length cDNA encoding the IGFBP-5 gene was cloned and characterized from the cerebral ganglion of Haliotis discus hannai. The 921-bp full-length sequence of Hdh IGFBP-5 cDNA transcript had an open reading frame of 411 bp encoding a predicted polypeptide of 136 amino acids, sharing high sequence identities with IGFBP-5 of H. diversicolor. The deduced Hdh IGFBP-5 protein contained a putative transmembrane domain (13-35 aa) in the N-terminal region. It also possessed a signature domain of IGFBP protein family (IB domain, 45-120 aa). Six cysteine residues (Cys-47, Cys-55, Cys-73, Cys-85, Cys-98, and Cys-118) in this cloned sequence could potentially form an intrachain disulfide bond. Phylogenetic analysis indicated that the Hdh IGFBP-5 gene was robustly clustered with IGFBP-5 of H. diversicolor. Tissue distribution analysis based on qPCR assay showed that Hdh IGFBP-5 was widely expressed in all examined tissues, with significantly (p < 0.05) higher expression in the cerebral ganglion. In male and female gametogenetic cycles, Hdh IGFBP-5 mRNA was expressed at all stages, showing significantly higher level at ripening stage. The expression level of Hdh IGFBP-5 mRNA was significantly higher in the polar body stage than in other ontogenic stages. In situ hybridization revealed that Hdh IGFBP-5 mRNA was present in the neurosecretory cells of the cerebral ganglion. This is the first study describing IGFBP-5 in H. discus hannai that might be synthesized in the neural ganglia. Our results demonstrate Hdh IGFBP-5 is involved in regulating ontogenic development and reproductive regulation of H. discus hannai. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

10 pages, 2145 KiB  
Article
Expression Profile of SARS-CoV-2 Host Receptors in Human Pancreatic Islets Revealed Upregulation of ACE2 in Diabetic Donors
by Jalal Taneera, Waseem El-Huneidi, Mawieh Hamad, Abdul Khader Mohammed, Esraa Elaraby and Mahmood Yaseen Hachim
Biology 2020, 9(8), 215; https://doi.org/10.3390/biology9080215 - 07 Aug 2020
Cited by 45 | Viewed by 4458
Abstract
Cellular entry of SARS-CoV-2 is thought to occur through the binding of viral spike S1 protein to ACE2. The entry process involves priming of the S protein by TMPRSS2 and ADAM17, which collectively mediate the binding and promote ACE2 shedding. In [...] Read more.
Cellular entry of SARS-CoV-2 is thought to occur through the binding of viral spike S1 protein to ACE2. The entry process involves priming of the S protein by TMPRSS2 and ADAM17, which collectively mediate the binding and promote ACE2 shedding. In this study, microarray and RNA-sequencing (RNA-seq) expression data were utilized to profile the expression pattern of ACE2, ADAM17, and TMPRSS2 in type 2 diabetic (T2D) and non-diabetic human pancreatic islets. Our data show that pancreatic islets express all three receptors irrespective of diabetes status. The expression of ACE2 was significantly increased in diabetic/hyperglycemic islets compared to non-diabetic/normoglycemic. Islets from female donors showed higher ACE2 expression compared to males; the expression of ADAM17 and TMPRSS2 was not affected by gender. The expression of the three receptors was statistically similar in young (≤40 years old) versus old (≥60 years old) donors. Obese (BMI > 30) donors have significantly higher expression levels of ADAM17 and TMPRSS2 relative to those from non-obese donors (BMI < 25). TMPRSS2 expression correlated positively with HbA1c and negatively with age, while ADAM17 and TMPRSS2 correlated positively with BMI. The expression of the three receptors was statistically similar in muscle and subcutaneous adipose tissues obtained from diabetic and nondiabetic donors. Lastly, ACE2 expression was higher in sorted pancreatic β-cell relative to other endocrine cells. In conclusion, ACE2 expression is increased in diabetic human islets. More studies are required to investigate whether variations of ACE2 expression could explain the severity of COVID-19 infection-related symptoms between diabetics and non-diabetic patients. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

19 pages, 3795 KiB  
Article
Enhanced Thermostability and Enzymatic Activity of cel6A Variants from Thermobifida fusca by Empirical Domain Engineering
by Imran Ali, Hafiz Muzzammel Rehman, Muhammad Usman Mirza, Muhammad Waheed Akhtar, Rehana Asghar, Muhammad Tariq, Rashid Ahmed, Fatima Tanveer, Hina Khalid, Huda Ahmed Alghamdi and Matheus Froeyen
Biology 2020, 9(8), 214; https://doi.org/10.3390/biology9080214 - 07 Aug 2020
Cited by 7 | Viewed by 2887
Abstract
Cellulases are a set of lignocellulolytic enzymes, capable of producing eco-friendly low-cost renewable bioethanol. However, low stability and hydrolytic activity limit their wide-scale applicability at the industrial scale. In this work, we report the domain engineering of endoglucanase (cel6A) of Thermobifida fusca to [...] Read more.
Cellulases are a set of lignocellulolytic enzymes, capable of producing eco-friendly low-cost renewable bioethanol. However, low stability and hydrolytic activity limit their wide-scale applicability at the industrial scale. In this work, we report the domain engineering of endoglucanase (cel6A) of Thermobifida fusca to improve their catalytic activity and thermal stability. Later, enzymatic activity and thermostability of the most efficient variant named as cel6A.CBC was analyzed by molecular dynamics simulations. This variant demonstrated profound activity against soluble and insoluble cellulosic substrates like filter paper, alkali-treated bagasse, regenerated amorphous cellulose (RAC), and bacterial microcrystalline cellulose. The variant cel6A.CBC showed the highest catalysis of carboxymethyl cellulose (CMC) and other related insoluble substrates at a pH of 6.0 and a temperature of 60 °C. Furthermore, a sound rationale was observed between experimental findings and molecular modeling of cel6A.CBC which revealed thermostability of cel6A.CBC at 26.85, 60.85, and 74.85 °C as well as structural flexibility at 126.85 °C. Therefore, a thermostable derivative of cel6A engineered in the present work has enhanced biological performance and can be a useful construct for the mass production of bioethanol from plant biomass. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Figure 1

20 pages, 1078 KiB  
Review
Non-Coding RNAs and Nucleosome Remodeling Complexes: An Intricate Regulatory Relationship
by Benjamin J. Patty and Sarah J. Hainer
Biology 2020, 9(8), 213; https://doi.org/10.3390/biology9080213 - 07 Aug 2020
Cited by 17 | Viewed by 4997
Abstract
Eukaryotic genomes are pervasively transcribed, producing both coding and non-coding RNAs (ncRNAs). ncRNAs are diverse and a critical family of biological molecules, yet much remains unknown regarding their functions and mechanisms of regulation. ATP-dependent nucleosome remodeling complexes, in modifying chromatin structure, play an [...] Read more.
Eukaryotic genomes are pervasively transcribed, producing both coding and non-coding RNAs (ncRNAs). ncRNAs are diverse and a critical family of biological molecules, yet much remains unknown regarding their functions and mechanisms of regulation. ATP-dependent nucleosome remodeling complexes, in modifying chromatin structure, play an important role in transcriptional regulation. Recent findings show that ncRNAs regulate nucleosome remodeler activities at many levels and that ncRNAs are regulatory targets of nucleosome remodelers. Further, a series of recent screens indicate this network of regulatory interactions is more expansive than previously appreciated. Here, we discuss currently described regulatory interactions between ncRNAs and nucleosome remodelers and contextualize their biological functions. Full article
(This article belongs to the Special Issue ATP-dependent Chromatin Remodeler)
Show Figures

Figure 1

13 pages, 2754 KiB  
Article
Transcriptome Analysis Reveals That Abeliophyllum distichum Nakai Extract Inhibits RANKL-Mediated Osteoclastogenensis Mainly through Suppressing Nfatc1 Expression
by Kyubin Lee, You-Jee Jang, Hyerim Lee, Eunbin Kim, Yeojin Kim, Tong-Kewn Yoo, Tae Kyung Hyun, Jae-Il Park, Sun-Ju Yi and Kyunghwan Kim
Biology 2020, 9(8), 212; https://doi.org/10.3390/biology9080212 - 06 Aug 2020
Cited by 9 | Viewed by 2761
Abstract
Abeliophyllum distichum Nakai is known as a monotypic genus endemic to South Korea. Currently, several pharmacological studies have revealed that A. distichum extract exhibits diverse biological functions, including anti-cancer, anti-diabetic, anti-hypertensive, and anti-inflammatory activities. In this study, we present the anti-osteoporotic activity of [...] Read more.
Abeliophyllum distichum Nakai is known as a monotypic genus endemic to South Korea. Currently, several pharmacological studies have revealed that A. distichum extract exhibits diverse biological functions, including anti-cancer, anti-diabetic, anti-hypertensive, and anti-inflammatory activities. In this study, we present the anti-osteoporotic activity of A. distichum extract by inhibiting osteoclast formation. First, we show that the methanolic extract of the leaves of A. distichum, but not extracts of the branches or fruits, significantly inhibits receptor activator of the NF-κB ligand (RANKL)-induced osteoclast differentiation. Second, our transcriptome analysis revealed that the leaf extract (LE) blocks sets of RANKL-mediated osteoclast-related genes. Third, the LE attenuates the phosphorylation of extracellular signal-related kinase. Finally, treatment with the LE effectively prevents postmenopausal bone loss in ovariectomized mice and glucocorticoid-induced osteoporosis in zebrafish. Our findings show that the extract of A. distichum efficiently suppressed osteoclastogenesis by regulating osteoclast-related genes, thus offering a novel therapeutic strategy for osteoporosis. Full article
(This article belongs to the Special Issue Molecular Mechanism of Histone Modification and Gene Regulation)
Show Figures

Figure 1

12 pages, 2031 KiB  
Article
Induction of CD4+CD25+ Regulatory T Cells from In Vitro Grown Human Mononuclear Cells by Sparteine Sulfate and Harpagoside
by Nour Z. Atwany, Seyedeh-Khadijeh Hashemi, Manju Nidagodu Jayakumar, Mitzi Nagarkatti, Prakash Nagarkatti and Mona Rushdi Hassuneh
Biology 2020, 9(8), 211; https://doi.org/10.3390/biology9080211 - 06 Aug 2020
Cited by 1 | Viewed by 3411
Abstract
Regulatory T cells (Tregs) are key players in the regulation of inflammatory responses. In this study, two natural molecules, namely, sparteine sulfate (SS) and harpagoside (Harp), were investigated for their ability to induce Tregs in human peripheral blood mononuclear cells (PBMCs). PBMCs were [...] Read more.
Regulatory T cells (Tregs) are key players in the regulation of inflammatory responses. In this study, two natural molecules, namely, sparteine sulfate (SS) and harpagoside (Harp), were investigated for their ability to induce Tregs in human peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy volunteers and grown in the presence or absence of ConA, with TGF-beta, SS or Harp. Expression of the mRNA of FoxP3, TGF-beta, IL-10 and GAPDH was assessed via q-PCR. The expression of Treg markers including CD4, CD25, CD127 and FoxP3 was measured via flow cytometry. The secretion of IL-10 and TGF-beta by cultured cells was assessed by ELISA. Furthermore, the suppressive role of SS and Harp on PBMCs in vitro was tested via allogeneic mixed lymphocyte reaction (MLR). Data obtained show that both compounds increased the expression of FoxP3, TGF-beta and IL-10 mRNA in resting PBMCs but to a lesser extent in activated cells. Moreover, they significantly increased the percent of CD4+CD25+FoxP3+CD127 Tregs in activated and naïve PBMCs. Functionally, both compounds caused a significant reduction in the stimulation index in allogeneic MLR. Together, our data demonstrate for the first time that SS and Harp can induce human Tregs in vitro and therefore have great potential as anti-inflammatory agents. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

11 pages, 1753 KiB  
Article
The Effect of Bacterial Endotoxin LPS on Serotonergic Modulation of Glutamatergic Synaptic Transmission
by Jate Bernard, Abigail Greenhalgh, Oscar Istas, Nicole T. Marguerite and Robin L. Cooper
Biology 2020, 9(8), 210; https://doi.org/10.3390/biology9080210 - 06 Aug 2020
Cited by 2 | Viewed by 3029
Abstract
The release of the endotoxin lipopolysaccharides (LPS) from gram-negative bacteria is key in the induction of the downstream cytokine release from cells targeting cells throughout the body. However, LPS itself has direct effects on cellular activity and can alter synaptic transmission. Animals experiencing [...] Read more.
The release of the endotoxin lipopolysaccharides (LPS) from gram-negative bacteria is key in the induction of the downstream cytokine release from cells targeting cells throughout the body. However, LPS itself has direct effects on cellular activity and can alter synaptic transmission. Animals experiencing septicemia are generally in a critical state and are often treated with various pharmacological agents. Since antidepressants related to the serotonergic system have been shown to have a positive outcome for septicemic conditions impacting the central nervous system, the actions of serotonin (5-HT) on neurons also exposed to LPS were investigated. At the model glutamatergic synapse of the crayfish neuromuscular junction (NMJ), 5-HT primarily acts through a 5-HT2A receptor subtype to enhance transmission to the motor neurons. LPS from Serratia marcescens also enhances transmission at the crayfish NMJ but by a currently unknown mechanism. LPS at 100 µg/mL had no significant effect on transmission or on altering the response to 5-HT. LPS at 500 µg/mL increased the amplitude of the evoked synaptic excitatory junction potential, and 5-HT in combination with 500 µg/mL LPS continued to promote enhanced transmission. The preparations maintained responsiveness to serotonin in the presence of low or high concentrations of LPS. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Graphical abstract

14 pages, 2604 KiB  
Article
Modification and Targeted Design of N-Terminal Truncates Derived from Brevinin with Improved Therapeutic Efficacy
by Haoyang He, Yuqing Chen, Zhuming Ye, Xiaoling Chen, Chengbang Ma, Mei Zhou, Xinping Xi, James F. Burrows, Tianbao Chen and Lei Wang
Biology 2020, 9(8), 209; https://doi.org/10.3390/biology9080209 - 06 Aug 2020
Cited by 14 | Viewed by 2551
Abstract
Antimicrobial peptides (AMPs) are a class of molecules that play an essential role in innate immune regulation. The Brevinin-1 family are AMPs that show strong pharmacological and antimicrobial potential. A novel peptide, B1A, was designed based on the primary structure of brevinin-1PLb and [...] Read more.
Antimicrobial peptides (AMPs) are a class of molecules that play an essential role in innate immune regulation. The Brevinin-1 family are AMPs that show strong pharmacological and antimicrobial potential. A novel peptide, B1A, was designed based on the primary structure of brevinin-1PLb and brevinin-1PLc. Subsequently, a synthesised replicate was subjected to a series of bioassays and was found to display antimicrobial activity. However, it also displayed high levels of haemolysis in a horse red blood cell haemolytic assay, suggesting potential toxicity. Therefore, we rationally designed a number of B1A analogues with aim of retaining antimicrobial activity, lowering toxicity, and to explore the structure–activity relationship of its N-terminus. B1A and its analogues still retained the “Rana Box” and the FLP-motif, which is a feature of this subfamily. However, the introduction of Lys and Trp residues into the peptide sequences revealed that antimicrobial activity of these analogues remained unchanged once the hydrophobicity and the charge reached the threshold. Hence, the idea that the hydrophobicity saturation in different situations is related to antimicrobial activity can be understood via the structure–activity relationship. Meanwhile, it could also be the starting point for the generation of peptides with specific antimicrobial activity. Full article
Show Figures

Figure 1

9 pages, 1685 KiB  
Article
Development of a New Drill Design to Improve the Temperature Control during the Osteotomy for Dental Implants: A Comparative In Vitro Analysis
by Sergio Alexandre Gehrke, Raphaél Bettach, Benoit Cayron, Gilles Boukhris, Berenice Anina Dedavid and Juan Carlos Prados Frutos
Biology 2020, 9(8), 208; https://doi.org/10.3390/biology9080208 - 06 Aug 2020
Cited by 4 | Viewed by 3470
Abstract
The present in vitro study evaluated a new drill design to improve the temperature control during the osteotomies for dental implant installation, comparing with two drill designs that use conventional external irrigation. Three blocks of synthetic cortical bone were used for osteotomy procedures. [...] Read more.
The present in vitro study evaluated a new drill design to improve the temperature control during the osteotomies for dental implant installation, comparing with two drill designs that use conventional external irrigation. Three blocks of synthetic cortical bone were used for osteotomy procedures. Three groups were created: control group 1 (Con1), where a conical multiple drill system with a conventional external irrigation system was used; control group 2 (Con2), where a single bur with a conventional external irrigation system was used; and, test group (Test), where the new single bur (turbo drill) with a new irrigation system was used. Twenty osteotomies were made without irrigation and with intense irrigation, for each group. A thermocouple was used to measure the temperature produced during the osteotomies. The measured temperature were: 28.9 ± 1.68 °C for group Con1; 27.5 ± 1.32 °C for group Con2; 26.3 ± 1.28 °C for group Test. Whereas, the measured temperatures with irrigation were: 23.1 ± 1.27 °C for group Con1; 21.7 ± 1.36 °C for group Con2; 19.4 ± 1.29 °C for group Test. The single drill with a new design for improving the irrigation and temperature control, in comparison with the drill designs with conventional external irrigation. Full article
(This article belongs to the Special Issue New Trends in Bioengineering in Osseointegration and Dental Implants)
Show Figures

Figure 1

16 pages, 3333 KiB  
Article
Expanding the Limits of Computer-Assisted Sperm Analysis through the Development of Open Software
by Jesús Yániz, Carlos Alquézar-Baeta, Jorge Yagüe-Martínez, Jesús Alastruey-Benedé, Inmaculada Palacín, Sergii Boryshpolets, Vitaliy Kholodnyy, Hermes Gadêlha and Rosaura Pérez-Pe
Biology 2020, 9(8), 207; https://doi.org/10.3390/biology9080207 - 05 Aug 2020
Cited by 7 | Viewed by 4480
Abstract
Computer assisted sperm analysis (CASA) systems can reduce errors occurring in manual analysis. However, commercial CASA systems are frequently not applicable at the forefront of challenging research endeavors. The development of open source software may offer important solutions for researchers working in related [...] Read more.
Computer assisted sperm analysis (CASA) systems can reduce errors occurring in manual analysis. However, commercial CASA systems are frequently not applicable at the forefront of challenging research endeavors. The development of open source software may offer important solutions for researchers working in related areas. Here, we present an example of this, with the development of three new modules for the OpenCASA software (hosted at Github). The first is the Chemotactic Sperm Accumulation Module, a powerful tool for studying sperm chemotactic behavior, analyzing the sperm accumulation in the direct vicinity of the stimuli. This module was validated by comparing fish sperm accumulation, with or without the influence of an attractant. The analysis clearly indicated cell accumulation in the treatment group, while the distribution of sperm was random in the control group. The second is the Sperm Functionality Module, based on the ability to recognize five sperm subpopulations according to their fluorescence patterns associated with the plasma membrane and acrosomal status. The last module is the Sperm Concentration Module, which expands the utilities of OpenCASA. These last two modules were validated, using bull sperm, by comparing them with visual counting by an observer. A high level of correlation was achieved in almost all the data, and a good agreement between both methods was obtained. With these newly developed modules, OpenCASA is consolidated as a powerful free and open-source tool that allows different aspects of sperm quality to be evaluated, with many potential applications for researchers. Full article
(This article belongs to the Special Issue Factors Affecting In Vitro Assessment of Sperm Quality)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop