Effect of Mechanical and Herbicide Treatments on Weed Densities and Biomass in Two Potato Cultivars
Abstract
:1. Introduction
- (a)
- provide a broader spectrum of action of herbicide chemistry and greater weed control than no weed control and mechanical weed control;
- (b)
- reduce environmental pollution and ensure better effectiveness of chemical treatments, due to the use of lower doses of herbicides, against the null hypothesis that there are no differences between the variants with herbicides and their mixtures and the variant without weed protection and the variant with mechanical weed infestation control in potatoes.
2. Material and Methods
2.1. Agrotechnical Treatments
2.2. Assessment of Weeds
- Nw—number of weeds of a given species growing on an area of 1 m2,
- N1, N2, N3—number of plants in the quadrat in subsequent measurements (pcs),
- Nm—number of measurements,
- Qa—quadrat of area (m2) [11].
2.3. Meteorological Conditions
2.4. Statistical Analyses
3. Results
3.1. Soil Conditions
3.2. Weed Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
AGRRE | Agropyron repens (L). P. Beauv. |
ECHCG | Echinochloa crus-galli (L.) P. Beauv |
CAPBP | Capsella bursa-pastoris (L.) Medik. |
CHEAL | Chenopodium album (L.) |
CONAR | Convolvulus arvensis (L.) |
EROCI | Erodium cicutarium (L.) L’H R |
SONAR | Sonchus arvensis (L.) |
VIOAR | Viola arvenis Murray |
BBCH | Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie |
PRE | before potato emergence |
POST | after potato emergence |
References
- Riethmuller-Haage, I.; Bastiaans, L.; Kempenaar, C.; Smutny, V.; Kropff, M.; Kropff, M. Are pre-spraying growing conditions a major determinant of herbicide efficacy? Weed Res. 2007, 47, 415–424. [Google Scholar] [CrossRef]
- Azadbakht, A. The effect of chemical and non-chemical control methods on weeds in potato (Solanum Tuberosum L.) cultivation in Ardabil province, Iran. Appl. Ecol. Environ. Res. 2017, 15, 1359–1372. [Google Scholar] [CrossRef]
- Barbaś, P.; Sawicka, B. Dependence of potato crop on weed infestation. Agronom. Sci. 2020, 8, 346–359. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Grzywacz, K.; Sikorska, A. Agricultural and economic effects of the use of biostimulants and herbicides in cultivation of the table potato cultivar Gawin. Acta Sci. Pol. Agric. 2020, 19, 3–10. [Google Scholar] [CrossRef]
- Lavlesh Raghav, M.; Sati, U.C.; Sati, K. Evaluating the manual and chemical methods for weed control in potato (Solanum tuberosum L.) under Tarai conditions of Uttarakhand. Int. Q. J. Life Sci. 2017, 12, 683–686. [Google Scholar]
- Mayerová, M.; Madaras, M.; Soukup, J. Effect of chemical weed control on crop yields in different crop rotations in a long-term field trial. Crop. Prot. 2018, 114, 215–222. [Google Scholar] [CrossRef]
- Caldiz, D.; de Lasa, C.; Bisio, P.E. Grass and weed management in potato (Solanum tuberosum L.) processing with Clomazone, in Argentine pampas. Am. J. Plant Sci. 2016, 7, 2339–2348. [Google Scholar] [CrossRef][Green Version]
- Pawlonka, Z. Potato yield in monoculture under differentiated intensity of weed control. Prog. Plant Prot. Postępy Ochr. Roślin 2007, 47, 229–233. [Google Scholar]
- Ryzak, M.; Bartmiński, P.; Bieganowski, A. Methods of determination of granulometric distribution of mineral soils. Theses and monographs. Acta Agroph. 2009, 175, 1–97. [Google Scholar]
- Tomlin, C. The e-Pesticide Manual; Version 5.2; British Crop Production Council: Hampshire, UK, 2011. [Google Scholar]
- Domaradzki, K.; Badowski, M.; Filipiak, K.; Franek, M.; Gołębiowska, H.; Kieloch, R.; Kucharski, M.; Rola, H.; Rola, J.; Sadowski, J.; et al. Field experiments. In Methodology Experiments of Biological Evaluation of Herbicides, Bioregulators and Adjuvants; Domaradzki, K., Ed.; Institute of Soil Science and Plant Cultivation Publishing House: Puławy, Poland, 2001; Chapter 1, p. 167. (In Polish) [Google Scholar]
- Roztropowicz, S. (Ed.) Methodic of Observation, Measurements and Sample Take in Agricultural Experiments with Potato; Plant Breeding Acclimatization Institute, Section Jadwisin: Wołomin, Poland, 1999; p. 50. [Google Scholar]
- SAS. I.I. SAS/STAT®9.2. Users Guide; SAS: Cary, NC, USA, 2008. [Google Scholar]
- John, H.M. Handbook of Biological Statistics, 3rd ed.; Sparky House Publishing: Baltimore, MD, USA, 2014; pp. 148–151. [Google Scholar]
- PN–R–0403. Chemical and Agricultural Analysis of Soil. Sampling; Polish Committee for Standardization: Warsaw, Poland, 1997. [Google Scholar]
- WRB. World Reference Database for Soil Resources. 2014. Available online: http://www.fao.org/3/a-i3794e.pdf (accessed on 8 June 2020).
- ISO (the International Organization for Standardization). ISO 10390: 2005, Soil Quality—Determination of pH; Technical Committee: ISO/TC 190/SC 3; Chemical and Physical Characteristics; ICS: 13.080.10. Chemical Characterization of Soils; ISO (The International Organization for Standardization): Geneva, Switzerland, 2005; Volume 2, pp. 1–7. [Google Scholar]
- KQ-07/PO-01/F-02. Version 09/07.04.2014. Regional Chemical And Agricultural Station in Lublin, Poland. 2014. Available online: http://www.oschr.pl/instrukcje/2_GO_dn_2014_01_21.pdf (accessed on 30 August 2020).
- PN-R-04020,1994+AZ1. Chemical and Agricultural Analysis of Soil; Polish Committee for Standardization: Warsaw, Poland, 2004. [Google Scholar]
- PN-R-04023. Chemical and Agricultural Analysis of Soil. Determination of Available Phosphorus Content in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 1996. [Google Scholar]
- PN-R-04022,1996+AZ1. Chemical and Agricultural Analysis of Soil. Determination of Available Potassium Content in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- Nawrocki, S. Fertilizer Recommendations. Part. I. Limit Numbers for Valuation of Soils in Macro and Microelements; IUNG: Puławy, Poland, 1990; Volume 44. [Google Scholar]
- Rindler, W. Visual horizons in models of the world. Mon. Not. R. Astron. Soc. 1956, 116, 662–677, reprinted in Gen. Rel. Grav. 2002, 34, 133–153. [Google Scholar] [CrossRef][Green Version]
- Andreasen, C.; Streibig, C. Evaluation of changes in weed flora in arable fields of Nordic countries based on Danish long-term surveys. Weed Res. 2010, 51, 214–226. [Google Scholar] [CrossRef]
- Grundy, A.C.; Mead, A.; Bond, W.; Clark, G.; Burston, S. The impact of herbicide management on long-term changes in the diversity and species composition of weed populations. Weed Res. 2010, 51, 187–200. [Google Scholar] [CrossRef][Green Version]
- Stešević, D.; Jovović, Z. Contribution to the knowledge on the weed flora in potato crop in the vicinity of Nikšić (Montenegro). Herb 2011, 12, 1–6. [Google Scholar]
- Mayerová, M.; Mikulka, J.; Kolářová, M.; Soukup, J. Changes in weed community composition in a long-term trial with different crop rotations and herbicide treatments. Julius-Kühn-Archiv 2018, 458, 58–66. [Google Scholar]
- Soren, C. Weed dynamics and yield of potato as influenced by weed management practices. Int. J. Pure Appl. Biosci. 2018, 6, 398–408. [Google Scholar] [CrossRef]
- Ciesielska, A.; Wysmułek, A. The efficacy of tank mixture herbicides Sencor 600 SC + Rimsulfuron in potatoes. Prog. Plant Protect. Postępy Ochr. Roślin 2012, 52, 885–888. [Google Scholar] [CrossRef]
- Nowak, S.; Waindzoch, K.; Świerszcz, S.; Niemczyk, M.; Spałek, K.; Nowak, A. Crop density rather than ruderal plants explains the response of ancient segetal weeds. Biologia 2018, 74, 351–359. [Google Scholar] [CrossRef]
- Ilić, O.; Nikolić, L.; Ilin, Ž.; Mišković, A.; Vujasinović, V.; Kukić, B. Effect of cultural practices on weeds community in function of potato yield. Acta Sci. Pol. Hortorum Cultus 2016, 15, 31–43. [Google Scholar]
- Woźnica, Z.; Idziak, R.; Szewczyk, R.A. New multifunctional adjuvant for glyphosate-based herbicides. Prog. Plant Protect. Postępy Ochr. Roślin 2004, 44, 536–542. [Google Scholar]
- Idziak, R.; Woźnica, Z. Skuteczność chwastobójcza herbicydu Callisto 100 SC stosowanego z adiuwantami i nawozem mineralnym. Acta Agroph. 2008, 11, 403–410. [Google Scholar]
- Pacanoski, Z. Role of adjuvants on herbicide behavior, a review of different experiences. Herb 2010, 11, 67–79. [Google Scholar]
- Villa, P.M.; Rodrigues, A.C.; Márquez, N.; Rodrigues, A.L.; Martins, S.V. Fitosociologíe de malezas después de un cultivo de papa (Solanum tuberosum L.) en los andes venezolanos: Un enfoque agroecologico. Phytosociology of weeds after potato cultivation (Solanum tuberosum L.) in the Venezuelan Andes: An agroecological approach. Trop. Subtrop. Agroecosystems 2017, 20, 329–339. [Google Scholar]
- Gajbhiye, V.T.; Gajbhiye, V.T. Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemosphere 2002, 47, 901–906. [Google Scholar] [CrossRef]
- Wang, C.J.; Liu, Z.Q. Foliar uptake of pesticides—Present status and future challenge. Pestic. Bioch. Physiol. 2007, 87, 1–8. [Google Scholar] [CrossRef]
- Stagnari, F.; Chiarini, M.; Pisante, M. Influence of fluorinated surfactants on the efficacy of some post-emergence sulfonylurea herbicides. J. Pestic. Sci. 2007, 32, 16–23. [Google Scholar] [CrossRef][Green Version]
- Kwiatkowski, C.A.; Wesołowski, M.; Drabowicz, M.; Misztal-Majewska, B. The effect of adjuvants and reduced rates of crop protection agents on the occurrence of agricultural pests and on winter wheat productivity. Ann. UMCS 2012, E-67, 12–21. [Google Scholar]
- Gugała, M.; Zarzecka, K.; Dołęga, H.; Sikorska, A. Weed infestation and yielding of potato under conditions of varied use of herbicides and bio-stimulants. J. Ecol. Eng. 2018, 19, 191–196. [Google Scholar] [CrossRef]
- Kierzek, R.; Paradowski, A.; Kaczmarek, S. Chemical methods of weed control in maize (Zea mays L.) in variable weather conditions. Acta Sci. Pol. Agric. 2012, 11, 35–52. [Google Scholar]
- Johnson, K.; Jacobsen, C.S.; Torsvik, V.; Sørensen, J. Pesticide effects on bacterial diversity in agricultural soils—A review. Biol. Fertil. Soils 2001, 33, 443–453. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnický, M.; Sharma, S.K.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of agrochemicals on soil microbiota and management: A review. Land 2020, 9, 34. [Google Scholar] [CrossRef][Green Version]
- Ramsey, R.J.L.; Stephenson, G.R.; Hall, J.C. Review of the effect of moisture, humectants and surfactant composition on the absorption and effectiveness of highly water-soluble herbicides. Biochem. Pestic. Phys. 2005, 82, 162–175. [Google Scholar] [CrossRef]
- Awasthi, R.; Gaur, P.M.; Turner, N.C.; Vadez, V.; Siddique, K.H.M.; Nayyar, H. Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop. Pasture Sci. 2017, 68, 823. [Google Scholar] [CrossRef]
- Spanogiannopoulos, P.; Bess, E.N.; Carmody, R.N.; Turnbaugh, P.J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat. Rev. Genet. 2016, 14, 273–287. [Google Scholar]
- Frąc, M.; Jezierska-Tys, S. Diversity of soil environment microorganisms. Adv. Microb. 2010, 40, 47–58. [Google Scholar]
- Zarzecka, K.; Gugała, M.; Dołęga, H. Regulation of weed infestation degree in potato with the use of herbicides. Biul. IHAR 2013, 267, 113–120. [Google Scholar]
- Tomczak, B.; Bączkowska, E.; Bubniewicz, P.; Górniak, J. Prosulfocarb—Herbicide for monocot and dicot weed control in winter cereals and potatoes. Prog. Plant Protect. Postępy Ochr. Roślin 2007, 47, 280–284. [Google Scholar]
- Pszczółkowski, P.; Sawicka, B. Attempts to reduce weed infestation of potato in cultivation under cover. Part II. Weight, abundance and species composition of weeds. Biul. IHAR 2003, 228, 261–273. [Google Scholar]
- Wichrowska, D. Weed infestation of potato plantation cultivated in Kujawsko-Pomorski Region. Eko Tech 2008, 16, 91–96. [Google Scholar]
- Baranowska, A.; Mystkowska, I.; Zarzecka, K.; Gugała, M. Efficacy of herbicides in potato crop. J. Ecol. Eng. 2016, 17, 82–88. [Google Scholar] [CrossRef][Green Version]
- Boydston, R.A. Managing weeds in potato rotations without herbicides. Am. J. Potato Res. 2010, 87, 420–427. [Google Scholar] [CrossRef]
- Sawicka, B. Resilient Agricultural Practices. In Zero Hunger. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- De Cicco, A.; Jeanty, J.C. Potato Sector in the EU—Production, Price and Trade Statistics. EUROSTAT. Statistic Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/The_EU_potato_sector_-_statistics_on_production,_prices_and_trade (accessed on 14 August 2020).
Trade Names | Common Names | Formulation | Dosage | Utility Forms and Application Date | Grace *** |
---|---|---|---|---|---|
Herbicides | |||||
Apyros 75WG | Sulfosulfuron | 75% | 26.5 g.ha−1 | granules for water suspension (POST) | Not applicable |
Fusilade Forte 150 EC | Fluazyfop-P butyl | 150 g in 1 L of measure | 2 L ha−1 | (POST) concentrate for water suspension | Not applicable |
Sencor 70 WG | Metribuzin | 70% | 0.5 (PRE *) or 0.3 kg ha−1 (POST **) | granules for water suspension | 42 days |
Titus 25 WG | Rimsulfuron | 25% | 40 g ha−1 | granules for water suspension (POST) | Not applicable |
Adjuvants (boosters) | |||||
Atpolan 80 SC | SN oil | 76% | 1 L ha−1 | concentrate for water suspension (POST) | Not applicable |
Trend 90 EC | ethoxylated isodecil alcohol | 90% | 0.1% | concentrate for water suspension (PRE) | Not applicable |
Specification | DM (g kg−1) | Ash (g kg−1 DM) | N Total (g kg−1DM) | N Miner. (g kg−1 DM) | P (g kg−1 DM) | K (g kg−1 DM) | Mg (g kg−1 DM) | Ca (g kg−1 DM) | Na (g kg−1 DM) | Cu (mg kg−1 DM) | Zn (mg kg−1 DM) | Mn (mg kg−1 DM) | Fe (mg kg−1 DM) | Ni (mg kg−1 DM) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
White mustard biomass | 454 | 55.1 | 19.2 | 0.8 | 3.1 | 31.6 | 4.5 | 1.2 | 0.8 | 0.4 | 35.4 | 36.0 | 63.4 | 7.05 |
Autumn 2006–2008 | ||
---|---|---|
Nitrogen fertilization (50 kg ha−1)—ammonium nitrate | ||
Tillage | ||
Sowing and plowing under the forecrop | ||
white mustard sowing (20 kg ha−1) | ||
disking of white mustard | ||
fertilization with phosphorus (39.3 kg P ha−1 in the form of granulated superphosphate) and potassium (116.2 kg K ha−1 in the form of 60% potassium salt) | ||
winter plowing to a depth of about 27 cm | ||
Spring 2007 | Spring 2008 | Spring 2009 |
Tillage and agricultural treatments | ||
Harrowing fertilization of N (100 kg ha−1—salmag) Cultivation with an aggregate planting of potato seeds—manually Earthing 2 times; in mechanical treatment, earthing and weeding 3 times Herbicide spraying PRE andPOST with atomic knapsack sprayerHarvest with potato elevator digger | Harrowing fertilization of N (100 kg ha−1—salmag) Cultivation with an aggregate planting of potato seeds—manually Earthing 2 times; in mechanical treatment, earthing and weeding 4 times Herbicide spraying PRE and POST with atomic knapsack sprayer Harvest with potato elevator digger | Harrowing fertilization of N (100 kg ha−1—salmag) Cultivation with an aggregate planting of potato seeds—manually Earthing 2 times; in mechanical treatment, earthing and weeding 4 times Herbicide spraying PRE and POST with atomic knapsack sprayer Harvest with potato elevator digger |
Pesticides | Years | ||
---|---|---|---|
2007 | 2008 | 2009 | |
Fungicides | chlorothalonil propamocarb hydrochloride SC—2.5 dm3 ha−1 fluazynam—0.4 L ha−1fenamidon + mankozeb—1.25 kg ha−1 metalaxyl − M + mancozeb—2.5 kg ha−1 | metalaxyl − M + mancozeb—2.5 kg ha−1 chlorothalonil (tetrachloroisophthalonitrile)—2 L ha−1 propamocarb hydrochloride, fenamidone—2 L ha−1 | metalaxyl − M + mancozeb—2.5 kg ha−1 mancozeb + cymoxanil/2-cyano-N-[(ethylamino) carbonyl]-2-(methoxyimino) acetamide—2 kg ha−1 propamocarb hydrochloride, fenamidone—2 L ha−1 |
Insecticides | thiamethoxam—0.04 kg ha−1 acetamiprid—0.08 kg ha−1 | thiamethoxam—0.04 kg ha−1 thiacloprid—0.75 L ha−1 acetamiprid—0.08 kg ha−1 | imidacloprid—0.25 L ha−1 thiacloprid—0.75 L ha−1 |
Year | Month | The Sum of Precipitation in the Month (mm) | % of the Long-Term Norm (1971–1995) | Sielianinov Hydrothermal Coefficient | Evaluation of the Month ** | |||
---|---|---|---|---|---|---|---|---|
Decade | Month | |||||||
1 | 2 | 3 | ||||||
2007 | April | 12.0 | 4.0 | 0.3 | 16.3 | <25 | 0.69 | Extremely dry |
May | 11.6 | 28.7 | 38.1 | 78.4 | 75–125 | 1.93 | Quite humid | |
June | 30.4 | 13.6 | 65.6 | 109.6 | 75–125 | 2.32 | Humid | |
July | 30.1 | 6.4 | 17.6 | 54.1 | 50–74 | 0.99 | Dry | |
August | 43.8 | 17.2 | 13.3 | 74.3 | 50–74 | 1.34 | Optimum | |
September | 42.5 | 49.0 | 12.2 | 103.7 | 75–125 | 3.20 | Extremely moist | |
Total | 170.4 | 118.9 | 146.8 | 436.4 | - | - | - | |
2008 | April | 11.4 | 12.9 | 5.0 | 29.3 | 25–49 | 1.36 | Optimum |
May | 36.8 | 12.8 | 13.3 | 62.9 | 50–74 | 1.64 | Quite humid | |
June | 0.0 | 21.0 | 22.5 | 43.5 | 25–49 | 0.84 | Dry | |
July | 20.2 | 38.2 | 10.4 | 68.8 | 50–74 | 1.22 | Quite dry | |
August | 26.8 | 37.8 | 16.3 | 80.9 | 75–125 | 1.48 | Optimum | |
September | 21.6 | 10.3 | 16.9 | 48.9 | 25–49 | 1.40 | Optimum | |
Total | 116.8 | 133.0 | 84.4 | 334.3 | - | - | - | |
2009 | April | 0.0 | 0.0 | 0.0 | 0.0 | <25 | 0.0 | Extremely dry |
May | 8.8 | 13.3 | 58.7 | 80.8 | 75–125 | 2.12 | Humid | |
June | 30.2 | 17.5 | 24.7 | 72.4 | 50–74 | 1.38 | Optimum | |
July | 36.8 | 20.5 | 28.3 | 85.6 | 75–125 | 1.28 | Quite dry | |
August | 12.5 | 48.5 | 22.1 | 83.1 | 75–125 | 1.54 | Optimum | |
September | 8.2 | 4.7 | 5.9 | 18.8 | <25 | 0.44 | Very dry | |
Total | 96.5 | 104.5 | 139.7 | 340.7 | - | - | - |
Years | Percentage of Fraction with Diameter (mm Diameter) | Grain Size Subgroup | Soil–Agricultural Complex | ||
---|---|---|---|---|---|
2.0–0.05 | 0.05–0.002 | <0.002 | |||
2007 | 72.0 | 24.0 | 4.0 | Sandy loam | Rye complex |
2008 | 71.0 | 26.0 | 3.0 | Sandy loam | Rye complex |
2009 | 72.0 | 24.0 | 4.0 | Sandy loam | Rye complex |
Years | Content of Available Forms (mg.100 g−1 DM of Soil) | pH (1M KCl) | Content of Organic Substance (%) | ||
---|---|---|---|---|---|
P2O5 | K2O | Mg | |||
2007 | 23.9 | 22.2 | 20.0 | 4.7 | 0.73 |
2008 | 9.9 | 16.8 | 15.5 | 5.4 | 0.68 |
2009 | 3.9 | 7.3 | 6.0 | 5.0 | 0.70 |
Experiment Factors | Species According WSSA *** | ||||||
---|---|---|---|---|---|---|---|
ECHCG | AGRRE | CHEAL | CONAR | EROCI | VIOAR | ||
Cultivar | “Irga” | 6.6 | 0.8 | 1.1 | 0.4 | 0.0 | 3.6 |
“Fianna” | 5.4 | 0.7 | 1.3 | 0.3 | 0.5 | 3.1 | |
LSDp0.05 | 1.0 | ns ** | ns | ns | 0.2 | ns | |
Weed control methods * | 1 | 14.9 | 0.9 | 5.4 | 1.2 | 1.8 | 9.3 |
2 | 6.5 | 0.7 | 2.7 | 0.6 | 0.2 | 5.9 | |
3 | 5.3 | 0.7 | 0.2 | 0.3 | 0.1 | 3.8 | |
4 | 3.0 | 0.7 | 0.0 | 0.2 | 0.0 | 1.8 | |
5 | 5.4 | 1.0 | 0.2 | 0.0 | 0.0 | 1.6 | |
6 | 5.6 | 1.1 | 1.0 | 0.1 | 0.1 | 1.8 | |
7 | 4.5 | 0.5 | 0.2 | 0.2 | 0.2 | 1.6 | |
8 | 3.0 | 0.6 | 0.2 | 0.2 | 0.2 | 0.7 | |
LSDp0.05 | 3.3 | ns | 1.5 | 0.8 | 0.8 | 2.7 | |
Years | 2007 | 5.1 | 1.7 | 0.1 | 0.0 | 0.5 | 1.6 |
2008 | 10.1 | 0.0 | 0.6 | 0.0 | 0.4 | 0.4 | |
2009 | 2.8 | 0.5 | 2.9 | 0.9 | 0.0 | 8.0 | |
LSDp0.05 | 1.5 | 0.5 | 0.7 | 0.4 | ns | 1.2 | |
Mean | 6.0 | 0.7 | 1.2 | 0.3 | 0.3 | 3.3 |
Experiment Factors | ECHCG | AGRRE | CAPBP | CHEAL | CONAR | EROCI | SONAR | VIOAR | |
---|---|---|---|---|---|---|---|---|---|
Cultivars | “Irga” | 8.3 | 1.4 | 0.3 | 2.4 | 1.6 | 0.0 | 0.04 | 4.7 |
“Fianna” | 6.4 | 1.5 | 0.0 | 2.0 | 1.2 | 0.5 | 0.01 | 3.4 | |
LSDp0.05 | 1.3 | ns ** | ns | ns | ns | 0.1 | ns | 1.2 | |
Weed control methods * | 1 | 16.2 | 1.8 | 1.6 | 7.4 | 2.5 | 1.0 | 0.10 | 8.6 |
2 | 8.4 | 2.0 | 0.0 | 4.3 | 1.8 | 0.3 | 0.05 | 6.6 | |
3 | 7.6 | 1.3 | 0.0 | 1.5 | 1.8 | 0.2 | 0.00 | 6.5 | |
4 | 4.8 | 1.7 | 0.0 | 0.6 | 1.0 | 0.0 | 0.00 | 2.8 | |
5 | 6.0 | 2.1 | 0.0 | 0.7 | 1.0 | 0.0 | 0.00 | 1.5 | |
6 | 6.7 | 1.2 | 0.0 | 1.1 | 1.0 | 0.2 | 0.00 | 2.8 | |
7 | 5.7 | 0.8 | 0.0 | 1.3 | 1.3 | 0.3 | 0.00 | 2.2 | |
8 | 3.2 | 1.0 | 0.0 | 0.7 | 0.8 | 0.0 | 0.00 | 1.4 | |
LSDp0.05 | 4.0 | ns | ns | 1.8 | ns | 0.6 | ns | 4.2 | |
Years | 2007 | 4.3 | 3.5 | 0.0 | 0.8 | 0.6 | 0.4 | 0.00 | 0.6 |
2008 | 12.4 | 0.1 | 0.0 | 1.6 | 0.5 | 0.4 | 0.00 | 0.5 | |
2009 | 5.4 | 0.8 | 0.6 | 4.2 | 3.2 | 0.0 | 0.08 | 11.0 | |
LSDp0.05 | 1.8 | 0.8 | ns | 0.8 | 0.9 | Ns | ns | 1.9 | |
Mean | 7.3 | 1.4 | 0.2 | 2.2 | 1.4 | 0.2 | 0.02 | 4.0 |
Experiment Factors | Weed Matter (g.m−2) | The Number of Weeds (pcs m−2) | |||
---|---|---|---|---|---|
Fresh Matter | Air-Dry Matter | Monocotyledonous | Dicotyledonous | ||
Cultivars | “Irga” | 286.7 | 116.9 | 9.7 | 9.0 |
“Fianna” | 221.5 | 88.7 | 7.9 | 7.1 | |
LSDp0.05 | 38.6 | 16.1 | ns ** | 1.6 | |
Weed control methods * | 1 | 576.9 | 236.7 | 18.0 | 21.2 |
2 | 321.1 | 142.7 | 10.4 | 13.0 | |
3 | 231.7 | 76.7 | 8.9 | 10.0 | |
4 | 111.4 | 55.8 | 6.5 | 4.4 | |
5 | 260.6 | 90.1 | 8.1 | 3.2 | |
6 | 227.5 | 94.5 | 7.9 | 5.1 | |
7 | 142.5 | 63.1 | 6.5 | 5.1 | |
8 | 141.1 | 62.9 | 4.2 | 2.9 | |
LSDp0.05 | 120.6 | 50.4 | 4.3 | 4.9 | |
Years | 2007 | 276.7 | 114.0 | 7.8 | 2.4 |
2008 | 295.3 | 132.2 | 12.5 | 3.0 | |
2009 | 190.3 | 62.2 | 6.2 | 19.0 | |
LSDp0.05 | 56.7 | 23.7 | 2.0 | 2.3 | |
Mean | 254,1 | 102.8 | 8.8 | 8.1 |
Cultivars | Years | ||
---|---|---|---|
2007 | 2008 | 2009 | |
Before row closing | |||
“Irga” | 283.1 | 310.8 | 265.0 |
“Fianna” | 270.2 | 279.7 | 114.3 |
LSDp0.05 | 36.6 | ||
Before tuber harvest | |||
“Irga” | 125.4 | 142.1 | 83.2 |
“Fianna” | 102.7 | 122.3 | 41.0 |
LSDp0.05 | 15.3 |
Cultivars | Years | ||
---|---|---|---|
2007 | 2008 | 2009 | |
Before row closing | |||
“Irga” | 8.7 | 11.9 | 17.0 |
“Fianna” | 9.6 | 11.7 | 13.2 |
LSDp0.05 | 3.5 | ||
Before tuber harvest | |||
“Irga” | 10.7 | 15.2 | 31.0 |
“Fianna” | 10.4 | 15.7 | 19.7 |
LSDp0.05 | 6.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbaś, P.; Sawicka, B.; Marczak, B.K.; Pszczółkowski, P. Effect of Mechanical and Herbicide Treatments on Weed Densities and Biomass in Two Potato Cultivars. Agriculture 2020, 10, 455. https://doi.org/10.3390/agriculture10100455
Barbaś P, Sawicka B, Marczak BK, Pszczółkowski P. Effect of Mechanical and Herbicide Treatments on Weed Densities and Biomass in Two Potato Cultivars. Agriculture. 2020; 10(10):455. https://doi.org/10.3390/agriculture10100455
Chicago/Turabian StyleBarbaś, Piotr, Barbara Sawicka, Barbara Krochmal Marczak, and Piotr Pszczółkowski. 2020. "Effect of Mechanical and Herbicide Treatments on Weed Densities and Biomass in Two Potato Cultivars" Agriculture 10, no. 10: 455. https://doi.org/10.3390/agriculture10100455