Influence of Farming System on Weed Infestation and on Productivity of Narrow-Leaved Lupin (Lupinus angustifolius L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Agronomic Management
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhardwaj, H.L.; Hamama, A.A.; Van Santen, E. White Lupin Performance and Nutritional Value as Affected by Planting Date and Row Spacing. Agron. J. 2004, 96, 580–583. [Google Scholar] [CrossRef]
- Fess, T.; Kotcon, J.B.; Benedito, V.A. Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. Sustainability 2011, 3, 1742. [Google Scholar] [CrossRef][Green Version]
- Księżak, J.; Staniak, M.; Bojarszczuk, J. The regional differentiation of legumes cropping area in Poland between 2001 and 2007. Pol. J. Agron. 2009, 1, 25–31. [Google Scholar]
- Sujak, A.; Kotlarz, A.; Strobel, W. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 2006, 98, 711–719. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Harzic, N.; Carroni, A.M. Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crop. Res. 2010, 119, 114–124. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Sulas, L.; Canu, S.; Ledda, L.; Carroni, A.M.; Salis, M. Yield and nitrogen fixation potential from white lupine grown in rainfed Mediterranean environments. Sci. Agricola 2016, 73, 338–346. [Google Scholar] [CrossRef][Green Version]
- Crews, T.E.; Peoples, M. Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Murphy-Bokern, D.; Watson, C. Legume-supported cropping systems for Europe. In Looking Forward 2016. Available online: http://www.legumefutures.de/images/Legume_Futures_Looking_Forward.pdf (accessed on 18 August 2020).
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crop. Res. 2015, 175, 64–79. [Google Scholar] [CrossRef][Green Version]
- Pelzer, E.; Bazot, M.; Makowski, D.; Corre-Hellou, G.; Naudin, C.; Al Rifaï, M.; Baranger, E.; Bedoussac, L.; Biarnès, V.; Boucheny, P.; et al. Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur. J. Agron. 2012, 40, 39–53. [Google Scholar] [CrossRef]
- Jaśkiewicz, B. The impact of production technology on yields of spring triticale under varied percentages of cereals to total cropped area. Fragm. Agron. 2017, 34, 7–17. (In Polish) [Google Scholar]
- Faligowska, A.; Panasiewicz, K.; Szymańska, G.; Szukala, J.; Koziara, W.; Pszczółkowska, A. Productivity of white lupin (Lupinus albus L.) as an effect of diversified farming systems. Legum. Res. Int. J. 2017, 40, 872–877. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975. [Google Scholar]
- Ceny Rolnicze. Available online: http://www.cenyrolnicze.pl (accessed on 20 August 2020).
- Agency for Restructuring and Modernization of Agriculture. Available online: https://www.arimr.gov.pl/ (accessed on 20 August 2020).
- Central Bank of the Republic of Poland. Available online: http://www.nbp.pl/homen.aspx?f=/kursy/kursyen.htm (accessed on 20 August 2020).
- Stanisz, A. Approachable Statistics Course; StatSoft: Krakow, Poland, 1998; p. 362. (In Polish) [Google Scholar]
- Poudel, D.; Horwath, W.; Lanini, W.; Temple, S.; Van Bruggen, A. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 2002, 90, 125–137. [Google Scholar] [CrossRef]
- Borowska, M.; Prusinski, J.; Kaszkowiak, E. Production results of intensification of cultivation technologies in three lupin (Lupinus L.) species. Plant Soil Environ. 2016, 61, 426–431. [Google Scholar] [CrossRef][Green Version]
- Dos Reis, A.R.; Vivi, R. Weed Competition in the Soybean Crop Management in Brazil. In Soybean—Applications and Technology; IntechOpen: London, UK, 2011; pp. 185–210. Available online: https://www.intechopen.com/books/soybean-applications-and-technology/weed-competition-in-the-soybean-crop-management-in-brazil (accessed on 20 August 2020).
- Suliman, A.A.M. Contribution of weed control and tillage systems on soil moisture content, growth and forage quality of (Clitoria&Siratro) mixture under-rainfed conditions at Zalingei—Western Darfur state—Sudan. J. Sci. Technol. 2008, 3, 80–90. [Google Scholar]
- Anonymous. The Biology of Lupinus L. (Lupin or Lupine); Australian Government; Version 1: April 2013; Department of Health and Ageing, Office of the Gene Technology Regulator: Canberra, Australia, 2013; p. 64.
- Szymańska, G.; Faligowska, A.; Panasiewicz, K.; Szukała, J.; Koziara, W. The productivity of two yellow lupine (Lupinus luteus L.) cultivars as an effect of different farming systems. Plant Soil Environ. 2017, 63, 552–557. [Google Scholar] [CrossRef][Green Version]
- Czerwińska-Kayzer, D.; Florek, J. Profitability of selected legumes. Fragm. Agronomy 2012, 29, 36–44. (In Polish) [Google Scholar]
- Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Szukała, J.; Ratajczak, K.; Sulewska, H. The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation. Agronomy 2020, 10, 304. [Google Scholar] [CrossRef][Green Version]
Year (Y) | April | May | June | July | August | Sum of Rainfall (mm) |
---|---|---|---|---|---|---|
2011 | 0.25 | 0.58 | 0.89 | 3.18 | 0.48 | 287 |
2012 | 0.80 | 0.84 | 2.26 | 2.27 | 1.90 | 412 |
2013 | 0.53 | 1.63 | 2.10 | 0.87 | 0.49 | 278 |
2014 | 1.99 | 2.50 | 0.97 | 1.18 | 1.74 | 390 |
2015 | 1.30 | 0.43 | 1.02 | 1.22 | 0.17 | 184 |
Agronomic Treatment | Farming System | ||
---|---|---|---|
LI | MI | CONV | |
Seed conditioning | Bradyrhizobium lupini | carboxin, thiram (350 mL per 100 kg of seeds) Bradyrhizobium lupini | carboxin, thiram (350 mL per 100 kg of seeds) Bradyrhizobium lupini |
Weed control | mechanical | Mechanical linuron (1.0 l h−1) (direct after sowing) | linuron (1.0 L ha−1) + clomazone (0.2 L ha−1) (direct after sowing) metamitron (1.5 L ha−1) (after emergence) |
Soil fertilization (kg ha–1) | – | N–15; P–21.8; K–58.1 | N–30; P–30.5; K–83 |
Foliar application of fertilizers | – | – | multiple micro- and macroelements |
Disease control | – | chlorothalonil (2.0 l ha−1) (tatrachloroizoftalonitryl) for Anthracnose | chlorothalonil (2.0 L ha−1) (tatrachloroizoftalonitryl) for Anthracnose |
Insects control | – | – | alfa-cypermethrin (0.1 L ha−1) (after emergence) for Sitona spp. |
Desiccation before harvest | – | – | diquat (2.5 L ha−1) (dibromide formula) |
Latin Binomial | Bayer Code | Farming System | ||
---|---|---|---|---|
LI | MI | CONV | ||
Agropyron repens (L.) Beauv. | AGRRE | 4 | 2 | 0 |
Anchusa arvensis L. | LYCAR | 1 | 0 | 1 |
Capsella bursa-pastoris (L.) Medik. | CAPBP | 1 | 0 | 0 |
Chenopodium album L. | CHEAL | 27 | 31 | 32 |
Convolvulus arvensis L. | CONAR | 0 | 0 | 1 |
Echinochola crus-galli (L.) Beauv. | ECHCG | 4 | 8 | 11 |
Galinsoga parviflora Cav. | GASPA | 2 | 3 | 0 |
Galium aparine L. | GALAP | 1 | 1 | 0 |
Lamium amplexicanle L. | LAMAM | 1 | 0 | 1 |
Polygonum convolvules (L.) A. Löve | POLCO | 49 | 46 | 43 |
Polygonum lapathifolium L. | POLLA | 5 | 1 | 6 |
Viola arvensis Murr. | VIOAR | 5 | 8 | 5 |
LSD Value | 4.72 ** | |||
Number of species | No. | 11 | 8 | 8 |
Specification | Farming System | LSD Value | |||
---|---|---|---|---|---|
LI | MI | CONV | |||
Dry weight of weeds (g) | 243.9 | 199.0 | 162.7 | 24.02 ** | |
Number of weeds | 97.7 | 80.8 | 63.5 | 17.83 ** | |
Plant density (no. m2) | 72.9 | 77.7 | 75.2 | NS | |
Number of pods per plant | 6.0 | 7.3 | 7.7 | 1.09 ** | |
Number of seeds per plant | 23.2 | 25.4 | 27.1 | NS | |
Number of seeds per plant pod | 3.9 | 3.5 | 3.5 | 0.24 ** | |
Mass of 1000 seeds (g) | 137.1 | 136.6 | 137.0 | NS | |
Protein content in seeds (g kg–1) | 307 | 304 | 317 | NS | |
Cultivar | |||||
Kalif | Regent | ||||
Dry weight of weeds (g) | 221.5 | 182.2 | 37.82 * | ||
Number of weeds | 85.3 | 76.9 | NS | ||
Plant density (no. m2) | 68.9 | 81.6 | 3.38 ** | ||
Number of pods per plant | 7.6 | 6.4 | 0.71 ** | ||
Number of seeds per plant | 27.7 | 22.8 | 3.08 ** | ||
Number of seeds per plant pod | 3.6 | 3.6 | NS | ||
Mass of 1000 seeds (g) | 141.5 | 132.2 | 3.58 ** | ||
Protein content in seeds (g kg–1) | 313 | 306 | NS |
Cultivar (C) | Farming System (FS) | Mean | ||
---|---|---|---|---|
LI | MI | CONV | ||
Protein Yield | ||||
Kalif | 488 | 641 | 714 | 614 |
Regent | 452 | 575 | 654 | 560 |
Mean | 470 | 608 | 684 | |
LSD value | FS—33.3 **; C—46.4 *; FS × C—NS | |||
Seed Yield | ||||
Kalif | 1.85 | 2.45 | 2.26 | 2.31 |
Regent | 1.75 | 2.25 | 2.44 | 2.15 |
Mean | 1.80 | 2.35 | 2.53 | |
LSD value | FS—0.13 **; C—NS; FS × C—NS |
Specification | Kalif | Regent | |||||
---|---|---|---|---|---|---|---|
Farming System | |||||||
LI | MI | CONV | LI | MI | CONV | ||
Production value * ha–1 | 830.17 | 972.45 | 996.16 | 806.45 | 925.00 | 948.74 | |
Total cost ha–1 | 353.87 | 546.40 | 886.16 | 387.98 | 580.50 | 920.28 | |
Gross agricultural income ha–1 | 476.30 | 426.06 | 110.00 | 418.47 | 344.50 | 28.46 | |
Cost of 1 t seed production ** | 186.25 | 218.56 | 340.83 | 215.54 | 252.39 | 383.45 | |
Cost of 1 kg protein production *** | 0.73 | 0.85 | 1.24 | 0.86 | 1.01 | 1.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faligowska, A.; Panasiewicz, K.; Szymańska, G.; Ratajczak, K.; Sulewska, H.; Pszczółkowska, A.; Kocira, A. Influence of Farming System on Weed Infestation and on Productivity of Narrow-Leaved Lupin (Lupinus angustifolius L.). Agriculture 2020, 10, 459. https://doi.org/10.3390/agriculture10100459
Faligowska A, Panasiewicz K, Szymańska G, Ratajczak K, Sulewska H, Pszczółkowska A, Kocira A. Influence of Farming System on Weed Infestation and on Productivity of Narrow-Leaved Lupin (Lupinus angustifolius L.). Agriculture. 2020; 10(10):459. https://doi.org/10.3390/agriculture10100459
Chicago/Turabian StyleFaligowska, Agnieszka, Katarzyna Panasiewicz, Grażyna Szymańska, Karolina Ratajczak, Hanna Sulewska, Agnieszka Pszczółkowska, and Anna Kocira. 2020. "Influence of Farming System on Weed Infestation and on Productivity of Narrow-Leaved Lupin (Lupinus angustifolius L.)" Agriculture 10, no. 10: 459. https://doi.org/10.3390/agriculture10100459