# Research on Truck Lane Management Strategies for Platooning Speed Optimization and Control on Multi-Lane Highways

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Truck Platooning Speed Control Based on Multi-Objective Optimization

#### 2.1. Model Construction Based on Model Predictive Control

#### 2.1.1. Improved Cell Transmission Model

#### 2.1.2. Control Cell Analysis

- (1)
- Calculation of platooning position

- (2)
- Single-bottleneck control cell analysis

- 1)
- $xcel{l}_{p}\left(t\right)\ge m$

- 2)
- $xcel{l}_{p}\left(t\right)<m$

- (3)
- Multi-bottleneck control cell analysis

- 1)
- $xcel{l}_{p}\left(t\right)\ge n$

- 2)
- $m\le {\mathrm{xcell}}_{\mathrm{p}}\left(t\right)<n$

- 3)
- $xcel{l}_{p}\left(t\right)<m$

#### 2.2. Optimal Speed Computation Based on Multi-Objective Optimization

#### 2.2.1. Objective Function

- (1)
- Bottleneck metacell traffic flow.

- (2)
- Overall vehicle travel time.

- (3)
- Truck platooning fuel consumption.

#### 2.2.2. Multi-Objective Speed Optimization

## 3. Analysis of the Lane Control Strategy Based on Truck Platooning Simulation

#### 3.1. Simulation Platform Construction

#### 3.1.1. Simulation Platform Construction

#### 3.1.2. Simulation Evaluation Indicators

#### 3.2. Analysis of the Lane Control Strategy

#### 3.2.1. Analysis of Exclusive Lanes for Truck Platooning

- (1)
- Truck platooning in the queue phase through the weaving section

- (2)
- Truck platooning in the separation phase through the weaving section

#### 3.2.2. Analysis of the Optimal Speed Control Strategy

#### 3.2.3. Comparative Analysis by Vehicle and Lane

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Bhoopalam, A.K.; Agatz, N.; Zuidwijk, R. Planning of truck platoons: A literature review and directions for future research. Transp. Res. Part B Methodol.
**2018**, 107, 212–228. [Google Scholar] [CrossRef] [Green Version] - Zhao, C.; Li, L.; Li, J.; Li, K.; Li, Z. The Impact of Truck Platoons on the Traffic Dynamics Around Off-Ramp Regions. IEEE Access
**2021**, 9, 57010–57019. [Google Scholar] [CrossRef] - Rahman, M.S.; Mohamed, A. Longitudinal safety evaluation of connected vehicles’ platooning on expressways. Accid. Anal. Prev.
**2018**, 117, 381–391. [Google Scholar] [CrossRef] [PubMed] - Yang, D.; Kuijpers, A.; Dane, G.; van der Sande, T. Impacts of large-scale truck platooning on Dutch highways. Transp. Res. Procedia
**2019**, 37, 425–432. [Google Scholar] [CrossRef] - Chen, Z.; Xiong, S.; Chen, Q.; Zhang, Y.; Yu, J.; Jiang, J.; Wu, C. Eco-Driving: A Scientometric and Bibliometric Analysis. IEEE Trans. Intell. Transp. Syst.
**2022**, 23, 22716–22736. [Google Scholar] [CrossRef] - Balador, A.; Bazzi, A.; Hernandez-Jayo, U.; de la Iglesia, I.; Ahmadvand, H. A survey on vehicular communication for cooperative truck platooning application. Veh. Commun.
**2022**, 35, 100460. [Google Scholar] [CrossRef] - Qu, F.; Wang, F.-Y.; Yang, L. Intelligent transportation spaces: Vehicles, traffic, communications, and beyond. IEEE Commun. Mag.
**2010**, 48, 136–142. [Google Scholar] [CrossRef] - Nowakowski, C.; Thompson, D.D.; Shladover, S.E.; Kailas, A.; Lu, X.-Y. Operational Concepts for Truck Maneuvers with Cooperative Adaptive Cruise Control. Transp. Res. Rec. J. Transp. Res. Board
**2016**, 2559, 57–64. [Google Scholar] [CrossRef] - Chan, E.; Gilhead, P.; Jelínek, P.; Krej£i, P.; Robinson, T. Cooperative control of SARTRE automated platoon vehicles. In 19th ITS World Congressertico—ITS Europeeuropean Commissionits Americaits Asia-Pacific; ITS Asia Pacific: Vienna, Austria, 2012. [Google Scholar]
- Van Nunen, E.; Kwakkernaat, M.R.J.A.E.; Ploeg, J.; Netten, B.D. Cooperative competition for future mobility. IEEE Trans. Intell. Transp. Syst.
**2012**, 13, 1018–1025. [Google Scholar] [CrossRef] - Tsugawa, S. An Overview on an Automated Truck Platoon within the Energy ITS Project. IFAC Proc. Vol.
**2013**, 46, 41–46. [Google Scholar] [CrossRef] - ENSEMBLE. ENSEMBLE—The Project. 2020. Available online: https://platooningensemble.eu/project (accessed on 11 February 2021).
- Lesch, V.; Breitbach, M.; Segata, M.; Becker, C.; Kounev, S.; Krupitzer, C. An Overview on Approaches for Coordination of Platoons. IEEE Trans. Intell. Transp. Syst.
**2021**, 23, 10049–10065. [Google Scholar] [CrossRef] - Gong, S.; Shen, J.; Du, L. Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon. Transp. Res. Part B Methodol.
**2016**, 94, 314–334. [Google Scholar] [CrossRef] - McAuliffe, B.; Lu, X.-Y.; Shladover, S. Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control. SAE Tech. Pap.
**2018**, 1, 1181. [Google Scholar] [CrossRef] [Green Version] - Bouchery, Y.; Hezarkhani, B.; Stauffer, G. Coalition formation and cost sharing for truck platooning. Transp. Res. Part B Methodol.
**2022**, 165, 15–34. [Google Scholar] [CrossRef] - Xu, M.; Yan, X.; Yin, Y. Truck routing and platooning optimization considering drivers’ mandatory breaks. Transp. Res. Part C Emerg. Technol.
**2022**, 143, 103809. [Google Scholar] [CrossRef] - Duret, A.; Wang, M.; Ladino, A. A hierarchical approach for splitting truck platoons near network discontinuities. Transp. Res. Part B Methodol.
**2019**, 132, 285–302. [Google Scholar] [CrossRef] [Green Version] - Piacentini, G.; Pasquale, C.; Sacone, S.; Siri, S.; Ferrara, A. Multiple Moving Bottlenecks for Traffic Control in Freeway Systems; Institute of Electrical and Electronics Engineers Inc.: Naples, Italy, 2019. [Google Scholar]
- Čičić, M.; Pasquale, C.; Siri, S.; Sacone, S.; Johansson, K.H. Platoon-actuated variable area mainstream traffic control for bot-tleneck decongestion. Eur. J. Control
**2022**, 68, 100687. [Google Scholar] [CrossRef] - Calvert, S.; Schakel, W.; van Arem, B. Evaluation and modelling of the traffic flow effects of truck platooning. Transp. Res. Part C Emerg. Technol.
**2019**, 105, 1–22. [Google Scholar] [CrossRef] - Mahnam, S.; Menendez, M. Analysis of strategies for truck platooning: Hybrid strategy. Transp. Res. Rec.
**2016**, 254, 41–48. [Google Scholar] - Törnell, J.; Sebben, S.; Elofsson, P. Experimental investigation of a two-truck platoon considering inter-vehicle distance, lateral offset and yaw. J. Wind. Eng. Ind. Aerodyn.
**2021**, 213, 104596. [Google Scholar] [CrossRef] - Siuhi, S.; Mussa, R. Simulation Analysis of Truck-Restricted and High-Occupancy Vehicle Lanes. Transp. Res. Rec. J. Transp. Res. Board
**2007**, 2012, 127–133. [Google Scholar] [CrossRef] - Winkler, M.; Fan, W.D. Evaluating impacts on freeway capacity using VISSIM: Accounting for truck lane restrictions, driver behavior, and interchange density. Adv. Transp. Stud.
**2011**, 25, 15–28. [Google Scholar] - Al Eisaeia, M.; Moridpourb, S.; Tay, R. Heavy Vehicle Management: Restriction Strategies. Transp. Res. Procedia
**2017**, 21, 18–28. [Google Scholar] [CrossRef] - Mahesh, S.; Ramadurai, G.; Nagendra, S.S. On-board measurement of emissions from freight trucks in urban arterials: Effect of operating conditions, emission standards, and truck size. Atmos. Environ.
**2019**, 212, 75–82. [Google Scholar] [CrossRef] - Wu, B.; Xuan, K.; Zhang, X.; Wu, Z.; Wang, W.; Shen, X.; Li, X.; Zhang, H.; Cao, X.; Hao, X.; et al. Quantitative of instantaneous BC emissions based on vehicle specific power from real-world driving diesel trucks in China. Sci. Total. Environ.
**2022**, 819, 153230. [Google Scholar] [CrossRef] [PubMed]

**Figure 2.**Schematic diagram of lane marking mode in weaving section (

**left**) and simulation diagram of weaving section (

**right**).

Vehicle Type | Minimum Speed | Maximum Speed | Average Speed | 85% Vehicle Speed |
---|---|---|---|---|

CAR | 46.6 | 120 | 84.2 | 96.4 |

HDT | 34.2 | 91.5 | 60.1 | 72 |

ATP | 36.5 | 94.66 | 65.3 | 77.2 |

Lane Management Method | Vehicle Type | Lane 1 | Lane 2 | Lane 3 | Lane 4 |
---|---|---|---|---|---|

Truck platooning exclusive lane and second lane close to HDT | CAR | √ | √ | √ | × |

HDT | × | × | √ | × | |

ATP | × | × | × | √ | |

Truck platooning exclusive lane under optimal speed control | CAR | √ | √ | √ | × |

HDT | × | √ | √ | × | |

ATP | × | × | × | √ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rui, Y.; Wang, S.; Wu, R.; Shen, Z.
Research on Truck Lane Management Strategies for Platooning Speed Optimization and Control on Multi-Lane Highways. *Appl. Sci.* **2023**, *13*, 4072.
https://doi.org/10.3390/app13064072

**AMA Style**

Rui Y, Wang S, Wu R, Shen Z.
Research on Truck Lane Management Strategies for Platooning Speed Optimization and Control on Multi-Lane Highways. *Applied Sciences*. 2023; 13(6):4072.
https://doi.org/10.3390/app13064072

**Chicago/Turabian Style**

Rui, Yikang, Shu Wang, Renfei Wu, and Zhe Shen.
2023. "Research on Truck Lane Management Strategies for Platooning Speed Optimization and Control on Multi-Lane Highways" *Applied Sciences* 13, no. 6: 4072.
https://doi.org/10.3390/app13064072