Previous Issue
Volume 11, April
 
 

Environments, Volume 11, Issue 5 (May 2024) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 1870 KiB  
Article
Assessing the Interpretability–Performance Trade-Off of Artificial Neural Networks Using Sentinel Fish Health Data
by Patrick G. McMillan, Zeny Z. Feng, Tim J. Arciszewski, Robert Proner and Lorna E. Deeth
Environments 2024, 11(5), 94; https://doi.org/10.3390/environments11050094 - 03 May 2024
Viewed by 111
Abstract
A number of sentinel species are regularly sampled from the environment near the Oil Sands Region (OSR) in Alberta, Canada. In particular, trout-perch are sampled as a proxy for the health of the aquatic ecosystem. As the development of the OSR began before [...] Read more.
A number of sentinel species are regularly sampled from the environment near the Oil Sands Region (OSR) in Alberta, Canada. In particular, trout-perch are sampled as a proxy for the health of the aquatic ecosystem. As the development of the OSR began before the environmental monitoring program was in place, there is currently no established measure for the baseline health of the local ecosystem. A common solution is to calculate normal ranges for fish endpoints. Observations found to be outside the normal range are then flagged, alerting researchers to the potential presence of stressors in the local environment. The quality of the normal ranges is dependent on the accuracy of the estimates used to calculate them. This paper explores the use of neural networks and regularized regression for improving the prediction accuracy of fish endpoints. We also consider the trade-off between the prediction accuracy and interpretability of each model. We find that neural networks can provide increased prediction accuracy, but this improvement in accuracy may not be worth the loss in interpretability in some ecological studies. The elastic net offers both good prediction accuracy and interpretability, making it a safe choice for many ecological applications. A hybridized method combining both the neural network and elastic net offers high prediction accuracy as well as some interpretability, and therefore it is the recommended method for this application. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

11 pages, 2222 KiB  
Article
Lithium Toxicity in Lepidium sativum L. Seedlings: Exploring Li accumulation’s Impact on Germination, Root Growth, and DNA Integrity
by Valentina Iannilli, Gianluca D’Onofrio, Davide Marzi, Laura Passatore, Fabrizio Pietrini, Lorenzo Massimi and Massimo Zacchini
Environments 2024, 11(5), 93; https://doi.org/10.3390/environments11050093 - 01 May 2024
Viewed by 267
Abstract
The predicted increase in demand for minor metals for modern technologies raises major concerns regarding potential environmental concentration increases. Among the minor metals, lithium (Li) is particularly noteworthy due to growing demand for battery production. Concerns have been raised about the impact on [...] Read more.
The predicted increase in demand for minor metals for modern technologies raises major concerns regarding potential environmental concentration increases. Among the minor metals, lithium (Li) is particularly noteworthy due to growing demand for battery production. Concerns have been raised about the impact on biota of increasing Li concentrations in the environment. To expand the knowledge of the effects of Li on plants, garden cress (Lepidium sativum L.), a model plant for ecotoxicity assay, was tested in a 72 h test in Petri plates. The results showed a stimulation effect of Li at the lowest concentration (Li chloride 10 mg L−1) on seed germination and primary root elongation. Conversely, higher Li concentrations (50 and 150 mg L−1) caused a progressive impairment in both parameters. A genotoxic effect of Li on root cells, evaluated through the alkaline comet assay, was observed at each concentration tested, particularly at 150 mg L−1 Li chloride. Elemental analysis showed that Li accumulated in the seedlings in a dose–concentration relationship, confirming its ability to be readily absorbed and accumulated in plants. Given the likely increase in Li levels in the environment, further research is required to clarify the toxicity mechanisms induced by Li on growth and nucleic acids. Full article
Show Figures

Figure 1

9 pages, 2586 KiB  
Communication
TiO2-Coated Meltblown Nonwoven Fabrics Prepared via Atomic Layer Deposition for the Inactivation of E. coli as a Model Photocatalytic Drinking Water Treatment System
by Alexander G. Aragon, Jaime A. Cárdenas Sánchez, Carlos Zimeri, Eunkyoung Shim, Xiaomeng Fang and Kyana R. L. Young
Environments 2024, 11(5), 92; https://doi.org/10.3390/environments11050092 - 30 Apr 2024
Viewed by 429
Abstract
The controlled manufacturing of semiconductor photocatalysts is crucial to their development for drinking water treatment. In this study, TiO2-coated meltblown nonwoven fabrics prepared via Atomic Layer Deposition (ALD) are applied for the inactivation of Escherichia coli (E. coli). It [...] Read more.
The controlled manufacturing of semiconductor photocatalysts is crucial to their development for drinking water treatment. In this study, TiO2-coated meltblown nonwoven fabrics prepared via Atomic Layer Deposition (ALD) are applied for the inactivation of Escherichia coli (E. coli). It is observed that in the presence of an ultraviolet light-emitting diode (UV-LED) light source (255 nm), 1.35 log E. coli inactivation is achieved. However, exposure to catalyst-coated fabrics in addition to the light source resulted in >4 log E. coli inactivation, suggesting a much higher rate of hydroxyl radical formation on the surface, leading to cell death. Full article
(This article belongs to the Special Issue Advanced Technologies of Water and Wastewater Treatment)
Show Figures

Graphical abstract

16 pages, 2472 KiB  
Article
Searching for the Profitability of Energy Crops: An Agroecological–Economic Land Use Suitability (AE-landUSE) Model
by Mauro Viccaro, Severino Romano, Immacolata Rosalia and Mario Cozzi
Environments 2024, 11(5), 91; https://doi.org/10.3390/environments11050091 - 29 Apr 2024
Viewed by 270
Abstract
The current geopolitical and energy market instability calls for speeding up the EU clean energy transition to increase energy security in all the European regions and make Europe the first climate-neutral continent by 2050. Among renewable energies, modern bioenergy is a promising near-zero-emission [...] Read more.
The current geopolitical and energy market instability calls for speeding up the EU clean energy transition to increase energy security in all the European regions and make Europe the first climate-neutral continent by 2050. Among renewable energies, modern bioenergy is a promising near-zero-emission fuel for increasing energy security in the heating, electricity and transport sectors while promoting growth and job creation, especially in rural areas. In such a context, energy crops will continue to play a key role. Since agricultural planning is a complex issue, especially when energy crops could compete with food ones, we propose an agroecological–economic land use suitability model (AE-landUSE model) to promote the sustainable use of land resources. The AE-landUSE model was developed by integrating cost–benefit analysis (CBA) and land use suitability analysis (LSA) within geographic information systems (GISs). Tested in the Basilicata region (Southern Italy), comparing two different energy crops (rapeseed and cardoon), the results show the model’s utility in identifying suitable areas for energy crops where the investments will be cost-effective. The proposed model will help decision-makers in energy-agricultural planning to increase energy security sustainably. Full article
Show Figures

Figure 1

15 pages, 2401 KiB  
Article
Aquatic Bacterial Community Connectivity: The Effect of Hydrological Flow on Community Diversity and Composition
by Javad Sadeghi, Clare J. Venney, Shelby Wright, James Watkins, Dana Manning, Edel Bai, Chelsea Frank and Daniel D. Heath
Environments 2024, 11(5), 90; https://doi.org/10.3390/environments11050090 - 28 Apr 2024
Viewed by 327
Abstract
Microbial communities are vital components of freshwater ecosystems due to their role in nutrient cycling and energy flow; however, the mechanisms driving their variation are still being explored. In aquatic systems, water flow (hydrology) can impact microbial community composition through community connectivity; however, [...] Read more.
Microbial communities are vital components of freshwater ecosystems due to their role in nutrient cycling and energy flow; however, the mechanisms driving their variation are still being explored. In aquatic systems, water flow (hydrology) can impact microbial community composition through community connectivity; however, the details of hydrology’s effects on microbial connectivity remain unclear. To address this question, we used 16S rRNA metabarcoding to determine bacterial community composition and connectivity across flow transects in three connected Great Lakes waterbodies with very different water-flow regimes: the Little River (high flow), the Detroit River (moderate flow), and Lake Erie (low flow). Bacterial alpha diversity (Chao1) did not differ among the three locations or sample sites along the transects. Analyses of beta diversity using community dissimilarity matrices identified significant differences among the three locations and among sample sites within locations. Bacterial community connectivity varied among the three locations, with a significant distance–decay relationship observed only in the low-flow location, which is indicative of connectivity driven by spatial proximity. Directional analyses showed that the water-flow direction affected bacterial similarity, consistent with the expected hydrological effects on community connectivity and previous published work. Our results indicate that (1) microbial community composition varies within and among even geographically close sampling locations and (2) the specific water-flow regime appears to affect bacterial community connectivity. Including hydrology in models of bacterial community composition will improve our understanding of the relative roles of selection versus stochastic effects on bacterial community diversity and composition in freshwater ecosystems. Full article
Show Figures

Figure 1

13 pages, 2481 KiB  
Article
Detection and Screening of Organic Contaminants in A Riverine System of Georgia Using Non-Targeted Analysis
by Gayatri Basapuram, Srimanti Duttagupta and Avishek Dutta
Environments 2024, 11(5), 89; https://doi.org/10.3390/environments11050089 - 26 Apr 2024
Viewed by 391
Abstract
Numerous organic chemicals exist within aquatic environments, yet effectively screening and prioritizing them is a huge challenge. This study provides a comprehensive investigation into the ecological dynamics of the North Oconee River within Athens-Clarke County, Georgia, with a specific focus on the distribution [...] Read more.
Numerous organic chemicals exist within aquatic environments, yet effectively screening and prioritizing them is a huge challenge. This study provides a comprehensive investigation into the ecological dynamics of the North Oconee River within Athens-Clarke County, Georgia, with a specific focus on the distribution of 33 identified compounds, including a prominent pesticide. The research, conducted in the riverine ecosystems proximal to the Firefly trail, employs advanced analytical techniques to elucidate potential contamination sources arising from agricultural and urban runoff. Intriguingly, the study reveals North Oconee River near the Firefly Trail as a notable site for heightened pesticide contamination, warranting a meticulous exploration of its origins. Furthermore, the investigation unveils the intricate microbial degradation processes of malathion within the North Oconee River, elucidating the pivotal role played by microbial activity in river water. The detection of degradant byproducts prompts the considerations of bioavailability and toxicity, associating potential implications for the river’s overall ecological health. Ongoing research endeavors to precisely quantify environmental risks and unravel indigenous microbial degradation pathways, presenting pivotal contributions to the scientific community’s understanding of complex riverine ecosystems. This research serves as a foundational piece in informing sustainable environmental management practices and emphasizes the urgency of comprehensive stewardship in safeguarding aquatic ecosystems. Full article
(This article belongs to the Special Issue Advanced Research on Micropollutants in Water)
Show Figures

Figure 1

34 pages, 3225 KiB  
Article
Plant-Wide Models for Optimizing the Operation and Maintenance of BTEX-Contaminated Wastewater Treatment and Reuse
by Dániel Bencsik, Tanush Wadhawan, Ferenc Házi and Tamás Karches
Environments 2024, 11(5), 88; https://doi.org/10.3390/environments11050088 - 25 Apr 2024
Viewed by 349
Abstract
Benzene, toluene, ethylbenzene and xylenes, collectively known as BTEX compounds, are significant emerging contaminants in municipal wastewater. Stricter effluent quality regulations necessitate their removal, especially with concerns about organic micropollutant concentrations. Water scarcity further underscores the need for wastewater treatment to ensure safe [...] Read more.
Benzene, toluene, ethylbenzene and xylenes, collectively known as BTEX compounds, are significant emerging contaminants in municipal wastewater. Stricter effluent quality regulations necessitate their removal, especially with concerns about organic micropollutant concentrations. Water scarcity further underscores the need for wastewater treatment to ensure safe agricultural or drinking water supplies. Although biological treatment partially reduces BTEX levels through processes like biodegradation and sorption, additional purification using physico-chemical methods is crucial for substantial reduction. This paper aims to outline plant-wide simulation methods for treating BTEX-contaminated sewage and facilitating reuse, adhering to IWA Good Modelling Practice Guidelines. The model, built upon the MiniSumo process model, incorporates equations detailing BTEX metabolism and removal kinetics, informed by an extensive literature review. Using a variant of the Benchmark Simulation Model with granular activated carbon for water reuse, the study examines strategies for improving effluent quality and minimizing operational costs. These strategies include adjusting the sludge retention time and airflow to enhance BTEX degradation and stripping, respectively, and comparing maintenance approaches for the GAC tower. Full article
(This article belongs to the Special Issue Advanced Technologies of Water and Wastewater Treatment)
Show Figures

Figure 1

21 pages, 2076 KiB  
Article
Analysing the Evidence of the Effects of Climate Change, Air Pollutants, and Occupational Factors in the Appearance of Cataracts
by Lucía Echevarría-Lucas, José Mª Senciales-González and Jesús Rodrigo-Comino
Environments 2024, 11(5), 87; https://doi.org/10.3390/environments11050087 - 24 Apr 2024
Viewed by 438
Abstract
Cataracts are ocular conditions characterized by the opacification of the natural lens within the eye, which develops gradually over time and can affect one or both eyes. This condition commonly results from age-related changes in the lens, but can also arise from various [...] Read more.
Cataracts are ocular conditions characterized by the opacification of the natural lens within the eye, which develops gradually over time and can affect one or both eyes. This condition commonly results from age-related changes in the lens, but can also arise from various factors. Cataract surgeries are expensive, particularly in states such as Spain, where they receive full support from the Spanish social welfare system. Despite a significant body of research on cataracts, few studies address the social and environmental factors triggering their development or consider the spatiotemporal evolution of their impacts. We analysed the incidence of cataracts in a southern region of Spain, differentiating between senile cataracts (those over 60 years old) and early cataracts (those between 15 and 59 years old). Twenty-one socio-economic, climate, and air pollution variables were statistically analysed using bivariate correlation, cluster analysis, and Geographic Information Systems. Eleven years of observation show a decadal increase in annually averaged maximum temperature and a decrease in annual precipitation, partially explaining the rising incidence of operable cataracts in the following year (r = 0.77 and −0.84, respectively; p < 0.05). Furthermore, early cataracts responded spatially to % agricultural employment (r = 0.85; p < 0.05) and moderately to maximum temperatures, insolation, and various constituents. Full article
(This article belongs to the Special Issue Air Quality, Health and Climate)
Show Figures

Figure 1

6 pages, 221 KiB  
Opinion
Challenges in Restoring Mediterranean Seagrass Ecosystems in the Anthropocene
by Monica Montefalcone
Environments 2024, 11(5), 86; https://doi.org/10.3390/environments11050086 - 23 Apr 2024
Viewed by 467
Abstract
The intense human pressures in the Anthropocene epoch are causing an alarming decline in marine coastal ecosystems and an unprecedented loss of biodiversity. This situation underscores the urgency of making ecological restoration a global priority to recover degraded ecosystems. Meadows of the endemic [...] Read more.
The intense human pressures in the Anthropocene epoch are causing an alarming decline in marine coastal ecosystems and an unprecedented loss of biodiversity. This situation underscores the urgency of making ecological restoration a global priority to recover degraded ecosystems. Meadows of the endemic Mediterranean seagrass Posidonia oceanica have lost more than half of their original extent in the last century, necessitating immediate conservation and management measures, supported by active restoration interventions. This paper explores new opportunities and provides specific recommendations to enhance restoration as a fundamental strategy for reversing the decline of P. oceanica ecosystems in the Mediterranean Sea. When a return to a historical pristine reference condition may not be feasible in the short term or desirable given current environmental conditions and uncertainty, transplanting the tolerant and fast-growing seagrass species Cymodocea nodosa could facilitate natural recolonization. This would occur through secondary ecological succession, benefiting the sensitive and slow-growing species P. oceanica. Future global and local efforts should primarily focus on proactive management to prevent further alterations by planning appropriate conservation measures in a timely manner to mitigate and reverse global changes. As a secondary step, restoration programs can be implemented with a focus on ‘target-oriented’ rather than ‘reference-oriented’ conditions, aiming to establish ecosystems capable of sustaining the future rather than replicating the historical environment. Full article
(This article belongs to the Special Issue Ecological Restoration in Marine Environments)
Previous Issue
Back to TopTop