Next Article in Journal
An Advanced Software Platform and Algorithmic Framework for Mobile DBH Data Acquisition
Previous Article in Journal
Greece’s Forest Sector from the Perspective of Timber Production: Evolution or Decline?
Previous Article in Special Issue
Crinipellis deutziae, Marasmius pinicola spp. nov., and C. rhizomaticola (Agaricales, Basidiomycota) New to China from Beijing
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Blackwellomyces kaihuaensis and Metarhizium putuoense (Hypocreales), Two New Entomogenous Fungi from Subtropical Forests in Zhejiang Province, Eastern China

1
School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
2
Kaihua Branch of Quzhou City Bureau of Ecology and Environment, Quzhou 324300, China
3
Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, Hangzhou 310058, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Forests 2023, 14(12), 2333; https://doi.org/10.3390/f14122333
Submission received: 25 September 2023 / Revised: 4 November 2023 / Accepted: 21 November 2023 / Published: 28 November 2023
(This article belongs to the Special Issue Fungal Biodiversity, Systematics, and Evolution)

Abstract

:
Entomogenous fungi are one of the most diverse fungal groups among ascomycetes. During investigations of macro-fungi biodiversity in Kaihua and Putuo in Zhejiang Province, China, in 2021, several entomopathogenic fungal specimens were collected from subtropical forests. After a careful examination of morphology and multi-gene phylogenetic analyses applying nrSSU, nrLSU, tef1, rpb1 and rpb2, two novel species were discovered, described herein as Blackwellomyces kaihuaensis and Metarhizium putuoense, and further compared with other similar species. Detailed descriptions, color photographs of fresh specimen and figures illustrating microscopic features of the two new species are provided.

1. Introduction

Entomogenous fungi are those microorganisms which can infect and kill arthropods. They are commonly found in soil and are thought to play important ecological roles, not only as a regulator of arthropod populations, but also because they form complex relationships with plants, either as an endophyte or epiphyte [1]. A few species such as Beauveria Vuill., Metarhizium Sorokīn, Isaria Pers. and Lecanicillium W. Gams & Zare have been used as biocontrol agents against a wide range of insect pests in forest, field and greenhouse environments [2]. All species in the hypocrealean families Cordycipitaceae and Ophiocordycipitaceae and some species in the family Clavicipitaceae are considered as entomopathogenic.
Blackwellomyces Spatafora & Luangsa-ard and Metarhizium are two genera that belong to the families Cordycipitaceae and Clavicipitaceae, respectively. The genus Blackwellomyces was segregated from Cordyceps Fr. and erected by the unique characters of the ascospore, which has irregularly spaced septa and does not disarticulate into part-spores at maturity [3]. Seven species of this genus have been described in Thailand, the United States and Japan [4,5,6,7]. Only one distribution record has been found from Sichuan Province within China for the genus, but without presenting any supporting specimen or sequence [8]. The genus Metarhizium was first described by Metchnikoff [9] and is one of the most ubiquitous genera of entomogenous fungi with diverse asexual morphologies and life cycles [10,11,12]. Due to the killing ability of various insect pests, certain species in this genus such as Metarhizium anisopliae (Metschn.) Sorokīn have been widely used as eco-friendly biocontrol agents and have attracted global research interest [13,14]. Up until now, 77 species have been included in the Index Fungorum in Metarhizium (http://www.indexfungorum.org/Names/Names.asp, accessed on 20 October 2023). In China, a total of 24 species have been described (https://nmdc.cn/fungarium/fungi/chinadirectories, accessed on 20 October 2023).
Zhejiang Province is located in the eastern coastal area of China; it has a humid subtropical climate and is characterized by a high forest coverage rate, making it particularly suitable for the growth of entomogenous fungi. About forty hypocrealean entomopathogenic species have been recorded in this province according to the Checklist of Fungi in China Database (https://nmdc.cn/fungarium/fungi/chinadirectories, accessed on 20 October 2023), mostly belonging to the genera Cordyceps and Ophiocordyceps Petch. The two genera of Blackwellomyces and Metarhizium have not been documented yet in the province. During field trips researching macro-fungi in Zhejiang Province in 2021, a good number of entomopathogenic fungal specimens were collected and identified. After a detailed morphological comparison and molecular studies, two novel species in the genera Blackwellomyces and Metarhizium were recognized and described in this study.

2. Materials and Methods

2.1. Field Collection

Specimens were collected from subtropical forests during field expeditions to Zhejiang Province, China, in March and June 2021. Strains were isolated from fresh specimens using potato dextrose agar (PDA) medium at room temperature and were then brought to the laboratory for further purification. After isolation, the fresh specimens were dried with silica gel. Dried specimens were deposited in the Fungarium (HMAS), Institute of Microbiology, Chinese Academy of Sciences.

2.2. Morphological Observation

Notes of stomata color and size were taken on fresh specimens. Color codes followed Kornerup and Wanscher (1981) [15]. Sections of ascomata were sliced by hand and mounted in a 5% KOH solution. Microscopic characters were observed using an Axio Imager A2 microscope (Carl Zeiss, Jena, Germany) with an Olympus XC50 digital camera (Olympus Corporation, Tokyo, Japan) and measured with Microsuite special edition software 3.1 (Soft Imaging Solutions GmbH, Münster, Germany).

2.3. DNA Isolation, PCR Amplification and Sequencing

DNA was extracted from either specimen or cultural mycelium. A method using Chelex-100 (Bio-Rad, Hercules, CA, USA) was applied for DNA isolation if dried specimen was used [16]. A modified CTAB method was otherwise applied if the fresh mycelium from cultured PDA plates was used for DNA isolation.
Six DNA fragments including internal transcribed spacers (ITS), the nuclear ribosomal small and large subunit subunit DNA (nrSSU and nrLSU), translation elongation factor 1-α (tef1), RNA polymerase II largest subunit (rpb1) and RNA polymerase II second largest subunit (rpb2) were amplified and sequenced for species identification and phylogenetic analysis. Primer pairs of ITS5/ITS4 [17], NS1/NS4 [17], LROR/LR5 [18], 983F/2218R [19], CRPB1/RPB1Cr [20] and fRPB2-5F/fRPB2-7cR [21] were used for PCR amplification and sequencing of ITS, nrSSU, nrLSU, tef1, rpb1 and rpb2, respectively. PCR condition followed the above cited literatures except for rpb2, which was carried out as: 5 min of denaturation at 95 °C; 35 cycles at 95 °C for 1 min, 53 °C for 1 min, 72 °C for 2 min; and a final extension at 72 °C for 10 min. PCR amplification was performed in a thermocycler (GeneAmp R_PCR System 9700, Applied Biosystems, Foster City, CA, USA) and a total volume of 50 µL reaction system was used containing: 25 µL 2 × Taq PCR Master Mix (Tiangen Biotech Co., Ltd., Beijing, China), 0.5 µL of each primer (10 pM), 1 µL template DNA and 23 µL sterile deionized water. The PCR products were first visualized on 1.2% agarose gels and positive PCR amplicons were sent for sequencing in both directions. Sequences obtained in this study have been deposited in GenBank under accession numbers OQ980401–OQ980407 (tef1), OQ980408 (rpb2), OQ980409–OQ980414 (rpb1), OQ981961–OQ981967 (ITS), OQ981968–OQ981974 (nrLSU) and OQ981975–OQ981981 (nrSSU) (Table 1).

2.4. Phylogenetic Analyses

Phylogenetic analyses applied five genes of nrSSU, nrLSU, tef1, rpb1 and rpb2, which were widely used in the phylogenetic classification of clavicipitaceous fungi [22] and in the genus Metarhizium [23]. Available sequences of the genera Blackwellomyces and Metarhizium were retrieved from GenBank, especially those used in Mongkolsamrit et al. (2020a,b) [7,23], and then aligned with sequences generated in this study using the software ClustalW version 1.81 [24]. The alignment was manually edited using BioEdit ver. 7.2.5 [25]. Phylogenetic analyses were conducted using maximum likelihood (ML) and Bayesian inference (BI) with the combined five-gene dataset comprising nrSSU, nrLSU, tef1, rpb1 and rpb2. The ML analysis was conducted with RAxML version 7.2.6 [26] using the GTRGAMMA model to obtain the best tree as well as the bootstrap supports (BS), which were assessed with 1000 replicates. Bayesian analyses were implemented with MrBayes v3.2.6. Two independent analyses of two parallel runs and four chains were carried out for 2,500,000 generations. Trees were sampled every 1000 generations; the first 20% were discarded as burn-in. Phylogenetic analyses of the two genera of Blackwellomyces and Metarhizium were constructed separately using the same approach. Gamszarea wallacei (H.C. Evans) Z.F. Zhang and L. Cai & Cordyceps cylindrical Petch were chosen as outgroups in phylogenetic reconstructions of Blackwellomyces and Metarhizium, respectively. Node supports greater than 70% in ML and above 0.95 in BI were shown on branches.
Table 1. Voucher information for materials used in phylogenetic analyses in this study. Bold: sequences obtained in this study; T: type specimen.
Table 1. Voucher information for materials used in phylogenetic analyses in this study. Bold: sequences obtained in this study; T: type specimen.
SpeciesVoucher No.LocationHostnrSSUnrLSUtef1rpb1rpb2References
Ascopolyporus polychrousP.C. 546BoliviaCoccoideaeDQ118737DQ118745DQ127236[27]
A. villosusARSEF 6355PanamaCoccoideaeAY886544DQ118750DQ127241[27]
Blackwellomyces aurantiacusBCC 85060 TThailandLepidoptera (larva)MT003028MK411598MK411600MT017819[7]
B. aurantiacusBCC 85061ThailandLepidoptera (larva)MT003029MK411599MK411601MT017820[7]
B. calendulinusBCC 68500ThailandColeoptera (larva)MT003030MT017842MT017802MT017821[7]
B. calendulinusBCC 68502 TThailandColeoptera (larva)MT003031MT017843MT017803MT017822[7]
B. cardinalisOSC 93610USALepidoptera (larva)AY184974AY184963EF469059EF469088EF469106[4]
B. cardinalisCBS 113411 TUSALepidoptera (larva)NG_013131MH874496[28]
B. cardinalisOSC 93609USALepidoptera (larva)AY184973AY184962DQ522325DQ522370DQ522422[4]
B. cardinalisOSC 93619JapanLepidoptera (larva)AY184975AY184964[4]
B. cardinalisOSC 93620JapanLepidoptera (larva)AY184976AY184965[4]
B. kaihuaensisHMAS 285455 TChinaLepidoptera (larva)OQ981975OQ981968OQ980401OQ980409OQ980408This study
B. kaihuaensisHMAS 285456ChinaLepidoptera (larva)OQ981976OQ981969OQ980402OQ980410This study
B. laterisMFLU 18-0663 TThailandLepidoptera (larva)NG_067678NG_067857MK069471MK084615MK079354[6]
B. minutusBCC 88269 TThailandColeoptera (larva)MT003032MT017844MT017804MT017823[7]
B. pseudomilitarisTBRC 3662ThailandLepidoptera (larva)MT003036MT017848MT017808[7]
B. pseudomilitarisBCC 73634ThailandLepidoptera (larva) MT017849MT017809MT017827[7]
B. pseudomilitarisBCC 1919 TLepidoptera (larva)MF416588MF416534MF416478MF416440[3]
B. pseudomilitarisBCC 2091Lepidoptera (larva)MF416589MF416535MF416479MF416441[3]
B. pseudomilitarisNBRC 101409ThailandLepidoptera (larva)JN941748JN941393JN992482[29]
B. pseudomilitarisNBRC 101410ThailandLepidoptera (larva)JN941747JN941394JN992481[29]
B. pseudomilitarisNBRC 101411ThailandLepidoptera (larva)JN941746JN941395JN992480[29]
B. pseudomilitarisNBRC 101413ThailandLepidoptera (larva)JN941745JN941396JN992479[29]
B. roseostromatusBCC 91358 TThailandLepidoptera (larva)MT003033MT017845MT017805MT017824[7]
B. roseostromatusBCC 91359ThailandLepidoptera (larva)MT003034MT017846MT017806MT017825[7]
B. roseostromatusBCC 91360ThailandLepidoptera (larva)MT003035MT017847MT017807MT017826[7]
Lecanicillium psalliotaeCBS 101270UKSoilEF469128EF469081EF469066EF469095EF469113[30]
Gamszarea wallaceiCBS 101237IndonesiaLepidoptera (pupa)NG_062646NG_042398EF469073EF469102EF469119[30]
Aschersonia badiaBCC 8105ThailandHemiptera: scale insectDQ522537DQ518752DQ522317DQ522363DQ522411[31]
A. placentaBCC 7869ThailandHemiptera: scale insectEF469121EF469074EF469056EF469085EF469104[30]
Balansia henningsianaA.E.G. 96-27aUSAPoaceae: Panicum sp.AY545723AY545727AY489610AY489643DQ522413[20]
B. pilulaeformisA.E.G. 94-2PoaceaeAF543764AF543788DQ522319DQ522365DQ522414[30]
Claviceps fusiformisATCC 26019PoaceaeDQ522539U17402DQ522320DQ522366[30]
C. paspaliATCC 13892PoaceaeU32401U47826DQ522321DQ522367DQ522416[30]
C. purpureaS.A. cp11PoaceaeEF469122EF469075EF469058EF469087EF469105[30]
Cordyceps cylindricaCBS 744.73JapanArachnida: spiderEF468987EF468841EF468786EF468892[30]
Hypocrella schizostachyiBCC 14123ThailandHemipteraDQ522557DQ518771DQ522346DQ522392DQ522447[30]
H. nectrioidesGJS 89-104Hemiptera: scale insectDQ518772DQ522347DQ522393DQ522448[31]
Keithomyces acicularisJCM 33284JapanSoilLC435738LC435741LC462188[32]
K. acicularisJCM 33285JapanSoilLC435739LC435742LC462189[32]
K. carneusCBS 239.32FranceSand duneEF468988EF468843EF468789EF468894EF468938[31]
K. carneusCBS 399.59USASoilEF468989EF468842EF468788EF468895EF468939[31]
K. neogunniiBUM 415ChinaLepidoptera (larva)MH143845MH143828MH143861MH143876MH143891[33]
K. neogunniiGZUH SB13050305ChinaLepidoptera (larva)KU729724KU729729KU729734[34]
Keithomyces sp.CBS 126563TanzaniaSoilMT078871MT078856MT078848MT078864MT078921[23]
Keithomyces sp.CBS 127407USASoilMT078873MT078858MT078850MT078866MT078923[23]
Marquandomyces marquandiiCBS 127132USASoilMT078872MT078857MT078849MT078865MT078922[23]
M. marquandiiCBS 129413USASoilMT078874MT078859MT078851MT078867[23]
M. marquandiiCBS 182.27USASoilEF468990EF468845EF468793EF468899EF468942[30]
Metacordyceps chlamydosporiaCBS 101244Diplopoda: egg of slugDQ522544DQ518758DQ522327DQ522372DQ522424[31]
M. chlamydosporiaCBS 504.66CanadaSoilAF339593AF339544EF469069EF469098EF469120[30]
Metapochonia bulbillosaCBS 145.70DenmarkPicea abiesAF339591AF339542EF468796EF468902EF468943[30]
M. goniodesCBS 891.72GermanyFungiAF339599AF339550DQ522354DQ522401DQ522458[30]
M. rubescensCBS 464.88ScotlandNematode eggsAF339615AF339566EF468797EF468903EF468944[30]
Metarhizium acridumARSEF 7486NigerOrthopteraEU248845EU248897EU248925[10]
M. albumARSEF 2082IndonesiaHemipteraDQ522560DQ518775DQ522352DQ522398DQ522452[30]
M. alvesiiCG1123BrazilSoilKY007614KY007612KY007613[35]
M. anisopliaeARSEF 7487EthiopiaOrthopteraDQ463996DQ468355DQ468370[10]
M. anisopliaeCBS 130.71UkraineAvena sativaMT078868MT078853MT078845MT078861MT078918[23]
M. argentinenseCEP424ArgentinaBlaberidae: EpilamprinaeMF966624MF966625MF966626[36]
M. atrovirensTNM F10184JapanColeopteraJF415950JF415966JN049884[11]
M. baoshanenseBUM 63.4ChinaSoilKY264178KY264175KY264170KY264181KY264184[37]
M. baoshanenseCCTCCM 2016589ChinaSoilKY264177KY264174KY264169KY264180KY264183[37]
M. bibionidarumCBS 648.67FranceColeopteraLC126075LC125907LC125923[38]
M. bibionidarumNBRC 112661JapanDipteraLC126076LC125908LC125924[38]
M. biotecenseBCC 51812 TThailandHemiptera: DelphacidaeMN781937MN781838MN781693MN781745MN781792[23]
M. biotecenseBCC 51813ThailandHemiptera: DelphacidaeMN781938MN781839MN781694MN781746MN781793[23]
M. blattodeaeMY00896ThailandBlattodeaHQ165657HQ165719HQ165678HQ165739HQ165638[12]
M. brachyspermumCM1JapanColeopteraLC469749LC469751[39]
M. brasilienseARSEF 2948BrazilHemipteraKJ398809KJ398620[40]
M. brittlebankisoidesHn1ChinaColeopteraAB778556AB778555AB778554[41]
M. brunneumARSEF 2107USAColeopteraEU248855EU248907EU248935[10]
M. candelabrumBCC 29224 TThailandHemiptera: leafhopperMN781952MN781853MN781708MN781755MN781804[23]
M. cercopidarumBCC 31660 TThailandHemiptera: leafhopperMN781953MN781854MN781709MN781756MN781805[23]
M. chaiyaphumenseBCC 78198ThailandHemiptera: CicadidaeKX369596KX369593KX369592KX369594KX369595[12]
M. chaiyaphumenseBCC 28241ThailandHemiptera: CicadidaeMN781932MN781831MN781684MN781740MN781784[23]
M. cicadaeBCC 48696ThailandHemiptera: CicadidaeMN781948MN781848MN781703MN781800[23]
M. cicadaeBCC 48881 TThailandHemiptera: CicadidaeMN781949MN781849MN781704MN781752[23]
M. clavatumBCC 84543 TThailandColeoptera (larva)MN781834MN781689MN781741MN781789[23]
M. clavatumBCC 84558ThailandColeoptera (larva)MN781835MN781690MN781742[23]
M. culicidarumBCC 7625ThailandDiptera: CulicidaeMN781850MN781705MN781801[23]
M. culicidarumBCC 2673ThailandDiptera: CulicidaeMN781950MN781851MN781706MN781753MN781802[23]
M. culicidarumBCC 7600 TThailandDiptera: CulicidaeMN781951MN781852MN781707MN781754MN781803[23]
M. cylindrosporumRCEF 3632ChinaHemiptera: CicadidaeJF415964JF415987JF416022[11]
M. cylindrosporumTNS 16371JapanHemiptera: CicadidaeJF415963JF415986JF416027JN049902[11]
M. dendrolimatilisGZAC-IFR1006ChinaLepidopteraKT166031KT961694KT166032[42]
M. eburneumBCC 79267ThailandLepidoptera (pupa)MN781826MN781735[23]
M. eburneumBCC 79252 TThailandLepidoptera (pupa)MN781829MN781682MN781736[23]
M. ellipsoideumBCC 49285 TThailandHemiptera (adult)MN781957MN781858MN781713MN781759MN781808[23]
M. ellipsoideumBCC 12847ThailandHemiptera (adult)MN781959MN781860MN781715MN781761MN781810[23]
M. ellipsoideumBCC 53509ThailandHemiptera (adult)MN781958MN781859MN781714MN781760MN781809[23]
M. flavovirideCBS 218.56Czech RepublicColeopteraKJ398787KJ398598[40]
M. flavovirideCBS 125.65USASoilMT078869MT078854MT078846MT078862MT078919[23]
M. flavumBCC 90870 TThailandColeoptera (larva)MN781965MN781874MN781731MN781776MN781822[23]
M. flavumBCC 90874ThailandColeoptera (larva)MN781966MN781875MN781732MN781777MN781823[23]
M. frigidumARSEF 4124AustraliaColeopteraDQ464002DQ468361DQ468376[43]
M. fusoideumBCC 41242ThailandPsocopteraMN781942MN781825MN781679MN781780[23]
M. fusoideumBCC 53130ThailandPsocopteraMN781943MN781843MN781698MN781795[23]
M. fusoideumBCC 28246 TThailandLepidopteraMN781944MN781844MN781699MN781749MN781796[23]
M. gaoligongenseBUM 3.5ChinaSoilKY087810KY087814KY087818KY087822[44]
M. gaoligongenseCCTCCM 2016588ChinaSoilKY087812KY087816KY087820KY087824KY087826[44]
M. globosumARSEF 2596IndiaLepidopteraEU248846EU248898EU248926[11]
M. granulomatisUAMH 11028 TDenmarkChamaeleo calyptratusHM635076HM195304KJ398781[45]
M. granulomatisUAMH 11176DenmarkChamaeleo calyptratusHM635078KJ398782KJ398593[45]
M. gryllidicolaBCC 37918ThailandOrthoptera: GryllidaeMN781935MN781836MN781691MN781743MN781790[46]
M. gryllidicolaBCC 82988ThailandOrthoptera: GryllidaeMK632117MK632091MK632062MK632166MK632143[46]
M. guizhouenseARSEF 6238ChinaLepidopteraEU248857EU248909EU248937[10]
M. guizhouenseCBS 258.90ChinaLepidopteraEU248862EU248914EU248942[10]
M. huainamdangenseBCC 32190ThailandHemiptera: leafhopperMN781954MN781855MN781710MN781757[23]
M. huainamdangenseBCC 44270 TThailandHemiptera: leafhopperMN781956MN781857MN781712MN781807[23]
M. huainamdangenseBCC 7672ThailandHemiptera: leafhopperMN781955MN781856MN781711MN781758MN781806[23]
M. humberiIP46BrazilSoilMH837574MH837556MH837565[47]
M. indigoticumTNS F18553JapanLepidopteraJF415953JF415968JF416010JN049886JF415992[11]
M. indigoticumTNS F18554JapanLepidopteraJF415952JF415969JF416011JN049887JF415993[11]
M. kalasinenseBCC 53582ThailandColeoptera (larva)KC011175KC011183KC011189[12]
M. koreanumARSEF 2039Republic of KoreaHemiptera: DelphacidaeKJ398806KJ398616[40]
M. koreanumBCC 27998ThailandHemiptera: FulgoromorphaMN781945MN781845MN781700MN781797[23]
M. koreanumBCC 30455ThailandHemiptera: FulgoromorphaMN781946MN781846MN781701MN781750MN781798[23]
M. lepidiotaeARSEF 7488AustraliaColeopteraEU248865EU248917EU248945[10]
M. majusARSEF 1015JapanLepidopteraEU248866EU248918EU248946[10]
M. majusARSEF 1914PhilippinesColeopteraEU248868EU248920EU248948[10]
M. megapomponiaeBCC 25100 TThailandHemiptera: MegopomponiaMN781947MN781847MN781702MN781751MN781799[23]
M. minusARSEF 2037PhilippinesHemipteraAF339580AF339531DQ522353DQ522400DQ522454[30]
M. minusARSEF 1099PhilippinesHemipteraKJ398799KJ398608KJ398706[40]
M. niveumBCC 52400 TThailandHemiptera: CicadidaeMN781933MN781832MN781685MN781785[23]
M. nornnoiBCC 19364ThailandLepidoptera (larva)MN781940MN781841MN781696MN781747[23]
M. nornnoiBCC 25948 TThailandColeoptera (adult beetle)MN781941MN781842MN781697MN781748[23]
M. novozealandicumARSEF 4661AustraliaSoilKJ398811KJ398622[40]
M. novozealandicumARSEF 4674AustraliaSoilKJ398812KJ398623[40]
M. ovoidosporumBCC 29223ThailandHemiptera: CercopidaeMN781960MN781861MN781716MN781762[23]
M. ovoidosporumBCC 32600 TThailandHemiptera: EurybrachidaeMN781961MN781862MN781717MN781763[23]
M. ovoidosporumBCC 7634ThailandHemiptera (adult)MN781962MN781863MN781718MN781764MN781811[23]
M. owariensisNBRC 33258JapanHemipteraHQ165669HQ165730HQ165689HQ165747[12]
M. pemphigiARSEF 7491UKHemipteraKJ398819KJ398629DQ468379[40]
M. pemphigiARSEF 6569UKHemipteraKJ398813KJ398624DQ468378[40]
M. phasmatodeaeBCC 49272ThailandOrthoptera: PhasmatodeaMK632119MK632093MK632064MK632145[46]
M. phasmatodeaeBCC 2841ThailandOrthoptera: PhasmatodeaMN781931MN781828MN781681MN781738MN781782[46]
M. phuwiangenseBCC 78206ThailandColeoptera (adult)MN781719MN781765MN781812[23]
M. phuwiangenseBCC 85068ThailandColeoptera (adult)MN781864MN781720MN781766MN781813[23]
M. phuwiangenseBCC 85069 TThailandColeoptera (adult)MN781865MN781721MN781767MN781814[23]
M. pingshaenseCBS 257.90ChinaColeopteraEU248850EU248902EU248930[10]
M. prachinenseBCC 47950ThailandLepidopteraKC011172KC011180KC011186KC011184[12]
M. prachinenseBCC 47979ThailandLepidopteraKC011173KC011181KC011187KC011185[12]
M. pseudoatrovirensTNS F16380JapanColeopteraJF415977JN049893JF415997[11]
M. purpureogenumMAFF 243305JapanSoilAB700552LC126078LC125913LC125920[38]
M. purpureogenumMAFF 244762JapanSoilLC126079LC125911LC125922[38]
M. purpureonigrumBCC 89247 TThailandColeoptera (larva)MN781725MN781771MN781817[23]
M. purpureonigrumBCC 89249ThailandColeoptera (larva)MN781963MN781869MN781726MN781772MN781818[23]
M. purpureonigrumBCC 89248ThailandColeoptera (larva)MN781964MN781870MN781727MN781819[23]
M. purpureumBCC 82173ThailandColeoptera (larva)MN781866MN781722MN781768MN781815[23]
M. purpureumBCC 82642 TThailandColeoptera (larva)MN781867MN781723MN781769MN781816[23]
M. purpureumBCC 83548ThailandColeoptera (larva)MN781868MN781724MN781770[23]
M. putuoenseHMAS 285457 TChinaColeoptera (larva)OQ981977OQ981970OQ980403OQ980411This study
M. putuoenseHMAS 285458ChinaColeoptera (larva)OQ981978OQ981971OQ980404OQ980412This study
M. putuoenseHMAS 285459ChinaColeoptera (larva)OQ981979OQ981972OQ980405OQ980413This study
M. putuoenseHMAS 285460ChinaColeoptera (larva)OQ981980OQ981973OQ980406OQ980414This study
M. putuoenseLY 280ChinaColeoptera (larva)OQ981981OQ981974OQ980407This study
M. reniformeIndGH96PhilippinesHQ165670HQ165732HQ165649[12]
M. reniformeARSEF 429PhilippinesOrthoptera: TettigoniidaeHQ165671HQ165733HQ165690HQ165650[12]
M. rileyiCBS 806.71USATrichoplusia niAY526491EF468787EF468893EF468937[30]
M. rileyiNBRC 8560JapanLepidopteraHQ165667HQ165729HQ165688[12]
M. robertsiiARSEF 4739AustraliaSoilEU248848EU248900EU248928[10]
M. samlanenseBCC 17091ThailandHemiptera (adult)HQ165665HQ165727HQ165686HQ165646[12]
M. samlanenseBCC 39752ThailandHemiptera (adult)MN781939MN781840MN781695MN781794[12]
M. sulphureumBCC 36585ThailandLepidoptera (larva)MN781686MN781786[23]
M. sulphureumBCC 39045ThailandLepidoptera (larva)MK632120MK632095MK632066MK632147[23]
M. sulphureumBCC 36592 TThailandLepidoptera (larva)MN781687MN781787[23]
M. takenseBCC 30939ThailandHemipteraHQ165659HQ165721HQ165741HQ165640[12]
M. takenseBCC 30934ThailandHemipteraHQ165658HQ165720HQ165679HQ165740HQ165639[12]
M. virideCBS 659.71Chameleo lateralisHQ165673HQ165735HQ165692HQ165652[12]
M. viridulumBCC 36261ThailandHemiptera: CicadidaeMN781930MN781827MN781680MN781737MN781781[23]
M. viridulumARSEF 6927TaiwanHemipteraKJ398815[40]
Myriogenospora atramentosaA.E.G. 96-32PlantAY489701AY489733AY489628AY489665DQ522455[30]
Nigelia aurantiacaBCC 19950ThailandLepidopteraGU979934GU979943GU979952GU979961GU979967[12]
N. aurantiacaBCC 37621ThailandLepidopteraGU979937GU979946GU979955GU979964GU979970[12]
N. martialisEFCC 6863Republic of KoreaLepidopteraJF415975JF416016JF415995[12]
N. martialisHMAS 197472ChinaColeoptera: CerambycidaeJF415955JF415973JF416015JN049892JF415994[12]
Papiliomyces liangshanensisEFCC 1452Republic of KoreaLepidopteraEF468962EF468815EF468756[30]
P. liangshanensisEFCC 1523Republic of KoreaLepidopteraEF468961EF468814EF468755EF468918[30]
P. shibinensisGZUH SB13050311ChinaLepidopteraKR153588KR153589KR153590[48]
Petchia siamensisBCC 68420ThailandOotheca of MantidaeMK632113MK632087MK632163MK632140[46]
P. siamensisBCC 73636ThailandOotheca of MantidaeMK632115MK632089MK632060MK632138[46]
Purpureocillium lavendulumFMR 10376VenezuelaSoilFR775489FR775516FR775512[49]
P. lilacinusCBS 284.36USASoilAY526475FR775484EF468792EF468898EF468941[30]
P. takamizusanenseNHJ 3582ThailandHemiptera: CicadidaeEU369097EU369034EU369015[50]
Purpureomyces khaoyaienseBCC 1376ThailandLepidoptera (larva)KX983468KX983462KX983457KX983465[12]
P. khaoyaiensisBCC 14290ThailandLepidoptera (larva)JF415970KJ398797JN049888[11]
P. maesotensisBCC 88441ThailandLepidoptera (larva)MN781877MN781734MN781779MN781824[23]
P. maesotensisBCC 89300 TThailandLepidoptera (larva)MN781876MN781733MN781778[23]
P. pyriformisBCC 85074 TThailandLepidoptera (larva)MN781873MN781730MN781775MN781821[23]
P. pyriformisBCC 85348ThailandLepidoptera (larva)MN781871MN781728MN781773MN781820[23]
P. pyriformisBCC 85349ThailandLepidoptera (larva)MN781872MN781729MN781774[23]
Regiocrella camerunensisARSEF 7682HemipteraDQ118735DQ118743DQ127234[51]
Rotiferophthora angustisporaCBS 101437Bdelloid rotifersAF339584AF339535AF543776DQ522402DQ522460[30]
Shimizuomyces paradoxusEFCC 6279Republic of KoreaSmilax sieboldiiEF469131EF469084EF469071EF469100EF469117[30]
S. paradoxusEFCC 6564Republic of KoreaSmilax sieboldiiEF469130EF469083EF469072EF469101EF469118[30]
Sungia yongmunensisEFCC 2131Republic of KoreaLepidopteraEF468977EF468833EF468770EF468876[30]
S. yongmunensisEFCC 2135Republic of KoreaLepidopteraEF468979EF468834EF468769EF468877[30]
Torrubiella luteorostrataNHJ 11343ThailandHemiptera: scale insectEF468995EF468850EF468801EF468906[30]
T. luteorostrataNHJ 12516ThailandHemiptera: scale insectEF468994EF468849EF468800EF468905EF468946[30]
T. petchiiNHJ 6240ThailandHemiptera: scale insectEU369103EU369038EU369022EU369060EU369082[50]
T. petchiiNHJ 6209ThailandHemiptera: scale insectEU369104EU369039EU369023EU369061EU369081[50]
T. tenuisNHJ 6293ThailandHemiptera: scale insectEU369112EU369044EU369029EU369068EU369087[50]
T. tenuisNHJ 345.01ThailandHemiptera: scale insectEU369111EU369045EU369030EU369088[50]
Tyrannicordyceps fratricidaTNS 19011FungiJQ257022JQ257023JQ257028JQ257016JQ257021[52]
Yosiokobayasia kusanaginensisTNS F18494JapanColeopteraJF415954JF415972JF416014JN049890[11]

3. Results

3.1. Phylogeny

The combined five-gene dataset for phylogenetic reconstruction of the genus Blackwellomyces comprises 28 taxa and includes 4832 nucleotide positions, among which 768 are variable and 434 informative. The topology of Blackwellomyces revealed by ML and BI was almost identical, despite slight differences in statistical support for certain branches (Figure 1). The monophyly of the genus Blackwellomyces is strongly supported (BS = 100%, PP = 1.00). In the phylogeny (Figure 1), the new collections from China (HMAS 285455 and HMAS 285456) are grouped together with B. aurantiacus Mongkols., Noisrip., Himaman & Luangsa-ard and B. lateris Y.P. Xiao, T.C. Wen & K.D. Hyde, two species that hailed from Thailand.
The five-gene dataset used for phylogenetic analysis for the genus Metarhizium includes 178 taxa and 4832 characters (base pairs) among which 1866 were variable and 1474 were parsimony informative. Both ML and BI analyses provided high supports for the terminal clades at the species/genus level except for Metarhizium, which formed a monophyletic group in ML but was poorly supported (Figure 2). The monophyly of Metarhizium was not supported in BI analyses as Nigelia Luangsa-ard, Tasan. & Thanak. merged into the clade. Sequences of the five collections (HMAS 285457, HMAS 285458, HMAS 285459, HMAS 285460 and LY 280) included in this study were identical. They formed a highly supported clade (BS = 100%, PP = 1.00) and showed a close sister relationship to Metarhizium flavum Luangsa-ard, Mongkols., Thanakitp. & Samson (Figure 2).

3.2. Taxonomy

Blackwellomyces kaihuaensis Yi Li, X.C. Zhao, A. Xu & W.F. Lin, sp. nov. (Figure 3).
Fungal Names: FN 571325.
Etymology—The epithet “kaihuaensis” refers to the type locality of Kaihua County, Quzhou City, Zhejiang Province, China, where the species was originally found.
Diagnosis—Differs from the closest species, B. lateris, by the shorter length of stromata and fertile head, stromata in the side face and the existence of septa. It also differs from another closely related species, B. aurantiacus, with shorter lengths of asci and ascospores.
Holotype—China, Zhejiang Province, Kaihua County, Linyuan Village, 29°10′21.89″ N, 118°36′20.80″ E, 343 m alt., on a lepidopteran larva buried in soil under mixed broadleaf–conifer forest, 29 May 2021, Yi Li and Ao Xu, HMAS 285455. GenBank accession numbers: ITS = OQ981961, nrSSU = OQ981975, nrLSU = OQ981968, tef1 = OQ980401, rpb1 = OQ980409, rpb2 = OQ980408.
Description—Sexual morph: Stromata: single or multiple, typically unbranched, 6–12 mm in length and 0.8–1.2 mm in width, orange-red to bright red, cylindrical to clavate. Rhizoids flexuous, emerging from the head area of lepidoptera larva, 5–25 mm below ground. Fertile part bright reddish-orange, clavate or palmated, 1.5–4.0 mm in length and 1.0–1.6 mm in width. Perithecia semi-immersed, narrowly ovoid, (280–)320–370(–410) × (100–)120–180(–200) µm. Asci eight-spored, cylindrical, (140–)170–240(–270) × 3.5–4.5 µm, with a 3–4 mm thick hemispheric top. Ascospores filiform, hyaline, irregularly multiseptated, (130–)160–220(–250) × 1.0–1.5 µm, do not separate into part-spores when they reach maturity. —Asexual morph: Colonies growing with white to purplish red on PDA, cottony with a high mycelium density and 20 mm in diameter after 10 days at 25 °C, purplish pigment spreading in PDA and no pigment in OA. Phialides Evlachovaea-like (conidia arranged in alternate orientations with a zipper-like arrangement), arising from aerial hyphae, solitary or in whorls of 2–5 on each branch, swollen at the base, 8–15 × 1.5–2.5 µm, tapering from the base to a thin neck, 5–10 × 1 µm. Conidia hyaline, ovoid to cylindrical, smooth, one-celled, 3–4 × 1.5–2.0 µm.
Additional specimen examined—China, Zhejiang Province, Kaihua County, Zaodi Village, 29°21′54.41″ N, 118°17′30.55″ E, 293 m alt, under mixed broadleaf–conifer forest, 24 May 2021, Jiao-Jiao Lu and Wen-Fei Lin, HMAS 285456. GenBank accession numbers: ITS = OQ981962, nrSSU = OQ981976, nrLSU = OQ981969, tef1 = OQ980402, rpb1 = OQ980410.
Host: larvae of Pyralidae (Lepidoptera).
Known distribution: Zhejiang Province, China.
Metarhizium putuoense Yi Li, X.C. Zhao, Yu Wang & W.F. Lin, sp. nov. (Figure 4).
Fungal Names: FN 571581.
Etymology—The epithet “putuoense” refers to the type locality of Putuo District, Zhoushan City, Zhejiang Province, China, where the species was originally found.
Diagnosis—Differs from closely related species, i.e., M. flavum, M. purpureonigrum Luangsa-ard, Tasan., Thanakitp. & Samson and M. purpureum Luangsa-ard, Mongkols., Lamlertthon, Thanakitp. & Samson by the pale yellow to light brown stomata with an infertile upper part.
Holotype—China, Zhejiang Province, Zhoushan City, Putuo District, Taohua Island, 29°47′06.57″ N, 122°18′09.94″ E, 183 m alt., on a coleoptera larva buried in soil of bare road slopes on the edge of a broad-leaved forest, 16 June 2021, Yi Li, Xin-Chang Zhao, Yu Wang and Wen-Fei Lin, HMAS 285457. GenBank accession numbers: ITS = OQ981963, nrSSU = OQ981977, nrLSU = OQ981970, tef1 = OQ980403, rpb1 = OQ980411.
Description—Sexual morph: Stromata single or multiple, unbranched or dichotomous, 25–60 mm long and 2–4 mm broad, pale yellow to light brown, usually clavate. Rhizoids flexuous, arising from the head or abdominal region of coleoptera larvae buried 2–4 cm deep underground. Fertile part light brown to pale purple, clavate or irregularly shaped, 10–15 mm long, 2–4 mm broad, the top is purple and infertile, Perithecia immersed, narrowly ovoid, (420–)450–500(–530) × (220–)250–300(–330) µm. Asci eight-spored, cylindrical, (190)210–260(280) × 5–7 µm, with a 6–8 × 5–7 µm hemispheric top. Ascospores filiform, hyaline, irregularly multiseptated, (170–)190–240(–260) × 1.0–1.5 µm, do not separate into part-spores when they reach maturity. —Asexual morph: Colonies on OA or PDA grow somewhat slowly and reach a diameter of 15–20 mm in 21 days at 25 °C, with low mycelium density, velvety, flocculent margin, white at the beginning of growth, the center of the colony produces green conidia after 14 days, reverse pale brown on PDA and yellow on OA. Phialides Metarhizium-like, arising from aerial hyphae, with 2–3 phialides per branch, wine bottle shape, 7–11 × 1.5–3.0 µm, swollen at the base and tapering suddenly into a thin neck 0.5–0.8 µm wide. Chlamydospores present, singly or multiple in short chains, subglobose, up to 5 µm in diameter. Conidia arranged in chains, smooth, oval, olive green, one-celled, 6–7 × 3–4 µm.
Additional specimen examined: China, Zhejiang Province, Zhoushan City, Putuo District, Taohua Island, 29°49′39.26″ N, 122°17′40.60″ E, 130 m alt, on a coleoptera larva buried in soil of bare road slopes on the edge of a broad-leaved forest, 17 June 2021, Yi Li, Xin-Chang Zhao, Yu Wang and Wen-Fei Lin, HMAS 285458 (GenBank accession numbers: ITS = OQ981964, nrSSU = OQ981978, nrLSU = OQ981971, tef1 = OQ980404, rpb1 = OQ980412), HMAS 285459 (GenBank accession numbers: ITS = OQ981965, nrSSU = OQ981979, nrLSU = OQ981972, tef1 = OQ980405, rpb1 = OQ980413), HMAS 285460 (GenBank accession numbers: ITS = OQ981966, nrSSU = OQ981980, nrLSU = OQ981973, tef1 = OQ980406, rpb1 = OQ980414).
Host: larvae of Campsosternus sp. (Coleoptera).
Known distribution: Zhejiang Province, China.

4. Discussion

Nearly 75% of Zhejiang province is covered in mountains and 61.24% is covered by forest, with a typically humid subtropical climate, making it suitable for the growth of entomogenous fungi. However, the biodiversity of this particular fungal group has not been studied in-depth in this region. During the investigation in the past two years, over 70 specimens have been collected with more than 15 species recognized (unpublished data). The present study reported two novel species, B. kaihuaensis and M. putuoense, based on morphological studies and five-gene phylogenies. The species biodiversity of this fungal group was considered far more rich than is currently known in this province.
Since the genus Blackwellomyces was segregated from Cordyceps, seven species have been described [3], including five species recorded from Thailand, i.e., B. pseudomilitaris (Hywel-Jones & Sivichai) Spatafora & Luangsa-ard, B. lateri, B. aurantiacus, B. calendulinus Mongkols., Noisrip., Khons. & Luangsa-ard, B. minutus Mongkols., Noisrip., Himaman & Luangsa-ard and B. roseostromatus Mongkols., Noisrip., Khonsanit & Luangsa-ard [5,6,7] and B. cardinalis (G.H. Sung & Spatafora) Spatafora & Luangsa-ard, which has been recorded in the eastern United States, southeastern Japan, Republic of Korea and Sichuan Province in China [4,8,52]. The new species B. kaihuaensis described in this study is supported as most closely related to B. lateris and B. aurantiacus by the five-gene phylogeny (Figure 1). The species differs from B. lateris by the shorter length of stromata, the fertile head with stromata in the side face and the existence of septa. Blackwellomyces lateris was reported to possess aseptate ascospores [6], which is different from all the known species and contradicts the concept of the genus; the genus is diagnosed by the irregularly multiseptated ascospores which do not disarticulate into part-spores at maturity [3]. The new species also differs from B. aurantiacus in lengths of asci and ascospores; the later species possesses longer asci and ascospores of 350 × 4–5 µm and (200–)235–295(–330) × 1.0–1.5 µm, respectively, compared with (140–)170–240(–270) × 3.5–4.5 µm and (130)160–220(250) × 1–1.5 µm for B. kaihuaensis. Notably, the five specimens of the species B. cardinalis did not form a monophyletic clade. Three collections from the United States clustered together and showed an earlier origination, whereas the other two collections from Japan showed a more recent speciation and a close relationship with B. roseostromatus (Figure 1). It is apparently necessary to check the materials that identified as B. cardinalis.
Metarhizium is a group of well-known insect pathogens with various sexual and asexual morphological traits [10,12]. In this study, 178 taxa and 66 species were selected for phylogenetic analysis, and it was found that M. putuoense formed a distinct linage and was most closely related to M. flavum, M. purpureonigrum and M. purpureum, all of which were found in Thailand [23]. Metarhizium putuoense has pale yellow to light brown stomata with a purple, infertile upper part while M. flavum has pale yellow to olive yellow stomata with a fertile upper part. Moreover, the species differ from each other in the length of their asci and ascospores. Metarhizium putuoense has longer asci and ascospores than M. flavum. Another difference between the two species is that M. putuoense produced chlamydospores when cultured on PDA plates, while M. flavum produced chlamydospores only on SDAY/4 but not on PDA. Metarhizium putuoense also differs from M. purpureonigrum and M. purpureum in the color of the stromata. The latter two species have purple to dark stromata with a fertile upper part, while M. putuoense has pale yellow to light brown stromata with an infertile upper part.
Finally, it is noteworthy that the new species B. kaihuaensis is found in troops, i.e., a large number of (>100) individuals were found in a relatively small (approximately 50 m2) region. In other words, the host insects can occur in high density and will probably cause outbreaks; in the meantime, a good number of Lepidoptera larva have been killed by the fungus. The fungus showed a good killing ability and can be considered as a potential biocontrol agent of forest pests, even though the host species has not been identified yet at the species level.
Entomopathogenic fungi, with special emphasis on the species in the order Hypocreals, widely exist in almost all terrestrial ecosystems, especially in tropical [53] and subtropical forests [22]. It is thought that entomogenous fungi may help to maintain stability in forest ecosystems as they are not only involved in the regulation of arthropod populations [53], but also act as endophytes assisting the plant host with growth, pathogen resistance and tolerance to environmental challenges such as drought and fire [54]. On the other hand, knowledge of the interactions between entomopathogenic fungi and its host insects, and plants in certain cases, is deficient. In addition, it is frequently observed that multiple strains belonging to different species have been isolated simultaneously in a single fungal-insect association. The phenomenon of hyperparasitism has often been reported particularly in the genus Pleurocordyceps Y.J. Yao, Y.H. Wang, S. Ban, W.J. Wang, Yi Li, Ke Wang & P.M. Kirk (also known as Polycephalomyces Kobayasi) [55]. A clear understanding of this interaction between insects and their fungal parasites requires more solvable technologies such as pyrosequencing, genome sequencing and pan-genome analysis, rather than just using a regular strategy of strain isolation, species identification and description only.

5. Conclusions

In the present study, two novel species were introduced based on a detailed morphologic study and multi-gene phylogenetic analyses from subtropical forests in Zhejiang Province, China, as Blackwellomyces kaihuaensis and Metarhizium putuoense, respectively.

Author Contributions

Conceptualization, Y.L. and W.-F.L.; methodology, X.-C.Z. and Y.W.; perform the experiment and formal analysis, Y.W., A.X. and X.-C.Z.; investigation, Y.L., A.X., L.-X.W. and W.-F.L.; writing—original draft preparation, Y.L. and X.-C.Z.; writing—review and editing, Y.L., L.-X.W. and W.-F.L.; supervision, Y.L.; project administration, Y.L. and L.-X.W.; funding acquisition, Y.L. and L.-X.W. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the Biodiversity Survey, Observation and Evaluation Project (2019–2023) of the Ministry of Ecology and Environment of China: Putuo 2021 Biodiversity Survey and Evaluation Project (202108060075), Kaihua Biodiversity Survey and Evaluation Project (202108060152), and the National Natural Science Foundation of China (32170001).

Data Availability Statement

The sequence data generated in this study have been deposited in GenBank.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Litwin, A.; Nowak, M.; Różalska, S. Entomopathogenic fungi: Unconventional applications. Rev. Environ. Sci. Bio 2020, 19, 23–42. [Google Scholar] [CrossRef]
  2. Mantzoukas, S.; Eliopoulos, P.A. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Appl. Sci. 2020, 10, 360. [Google Scholar] [CrossRef]
  3. Kepler, R.M.; Luangsa-ard, J.J.; Hywel-Jones, N.L.; Quandt, C.A.; Sung, G.H.; Rehner, S.A.; Aime, M.C.; Henkel, T.W.; Sanjuan, T.; Zare, R.; et al. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 2017, 8, 335–353. [Google Scholar] [CrossRef]
  4. Sung, G.H.; Spatafora, J.W. Cordyceps cardinalis sp. nov., a new species of Cordyceps with an east Asian-eastern North American distribution. Mycologia 2004, 96, 658–666. [Google Scholar] [CrossRef] [PubMed]
  5. Hywel-Jones, N.L. Cordyceps khaoyaiensis and C. pseudomilitaris, two new pathogens of lepidopteran larvae from Thailand. Mycol. Res. 1994, 98, 939–942. [Google Scholar] [CrossRef]
  6. Hyde, K.D.; Tennakoon, D.S.; Jeewon, R.; Bhat, D.J.; Maharachchikumbura, S.S.N.; Rossi, W.; Leonardi, M.; Lee, H.B.; Mun, H.Y.; Houbraken, J.; et al. Fungal diversity notes 1036–1150: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2019, 96, 1–242. [Google Scholar] [CrossRef]
  7. Mongkolsamrit, S.; Noisripoom, W.; Tasanathai, K.; Khonsanit, A.; Thanakitpipattana, D.; Himaman, W.; Kobmoo, N.; Luangsa-ard, J.J. Molecular phylogeny and morphology reveal cryptic species in Blackwellomyces and Cordyceps (Cordycipitaceae) from Thailand. Mycol. Prog. 2020, 19, 957–983. [Google Scholar] [CrossRef]
  8. Zhang, S.P.; Li, Q.Y.; Zan, X.; Yan, Q.X.; Li, L.H. Studies of macrofungal resources in Micang Mountain Nature Reserve, Sichuan Province. Edible Fungi 2020, 42, 16–19. (In Chinese) [Google Scholar]
  9. Metschnikoff, E. Diseases of Wheat Chafers Zapiski imperatorskogo Obscestva Sel’skogo Hoziatistva Juznoi Roosi God Sorok Devjaytyi; Elsevier: Odessa, Ukraine, 1879; pp. 21–50. (In Russian) [Google Scholar]
  10. Bischoff, J.F.; Rehner, S.A.; Humber, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 2009, 101, 512–530. [Google Scholar] [CrossRef] [PubMed]
  11. Kepler, R.M.; Sung, G.H.; Ban, S.; Nakagiri, A.; Chen, M.J.; Huang, B.; Li, Z.; Spatafora, J.W. New teleomorph combinations in the entomopathogenic genus Metacordyceps. Mycologia 2012, 104, 182–197. [Google Scholar] [CrossRef]
  12. Luangsa-ard, J.J.; Mongkolsamrit, S.; Thanakitpipattana, D.; Khonsanit, A.; Tasanathai, K.; Noisripoom, W.; Humber, R.A. Clavicipitaceous entomopathogens: New species in Metarhizium and a new genus Nigelia. Mycol. Prog. 2017, 16, 369–391. [Google Scholar] [CrossRef]
  13. Zimmermann, G. The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pestic. Sci. 1993, 37, 375–379. [Google Scholar] [CrossRef]
  14. Oreste, M.; Bubici, G.; Poliseno, M.; Tarasco, E. Effect of Beauveria bassiana and Metarhizium anisopliae on the Trialeurodes vaporariorum-Encarsia formosa system. J. Pest Sci. 2016, 89, 153–160. [Google Scholar] [CrossRef]
  15. Kornerup, A.; Wanscher, J. Methuen Handbook of Colour Fletcher; Fletcher & Son: Norwich, UK, 1981; pp. 1–252. [Google Scholar]
  16. Wang, W.J.; Wang, X.L.; Li, Y.; Xiao, S.R.; Kepler, R.M.; Yao, Y.J. Molecular and morphological studies of Paecilomyces sinensis reveal a new clade in clavicipitaceous fungi and its new systematic position. Syst. Biodivers. 2012, 10, 221–232. [Google Scholar] [CrossRef]
  17. White, T.; Bruns, T.; Lee, S.; Taylor, J.; Innis, M.; Gelfand, D.; Sninsky, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 31, 315–322. [Google Scholar]
  18. Vilgalys, R.; Sun, B.L. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc. Natl. Acad. Sci. USA 1994, 91, 4599–4603. [Google Scholar] [CrossRef] [PubMed]
  19. Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef]
  20. Castlebury, L.A.; Rossman, A.Y.; Sung, G.H.; Hyten, A.S.; Spatafora, J.W. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycol. Res. 2004, 108, 864–872. [Google Scholar] [CrossRef]
  21. Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef]
  22. Sung, G.H.; Hywel-Jones, N.L.; Sung, J.M.; Luangsa-Ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar] [CrossRef]
  23. Mongkolsamrit, S.; Khonsanit, A.; Thanakitpipattana, D.; Tasanathai, K.; Noisripoom, W.; Lamlertthon, S.; Himaman, W.; Houbraken, J.; Samson, R.A.; Luangsa-ard, J. Revisiting Metarhizium and the description of new species from Thailand. Stud. Mycol. 2020, 95, 171–251. [Google Scholar] [CrossRef]
  24. Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
  25. Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar] [CrossRef]
  26. Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
  27. Bischoff, J.F.; Chaverri, P.; White, J.F. Clarification of the host substrate of Ascopolyporus and description of Ascopolyporus philodendrus sp. nov. Mycologia 2005, 97, 710–717. [Google Scholar] [CrossRef] [PubMed]
  28. Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef] [PubMed]
  29. Schoch, C.; Seifert, K.; Huhndorf, S.; Robert, V.; Spouge, J.; Levesque, C.; Chen, W.; Fungal Barcoding Consortium. The internal transcribed spacer as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
  30. Spatafora, J.W.; Sung, G.H.; Sung, J.M.; Hywel-Jones, N.L.; White, J.F. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 2007, 16, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
  31. Iwasaki, H.; Tokiwa, T.; Shiina, M.; Asami, Y.; Shiomi, K.; Omura, S.; Nonaka, K. Metarhizium aciculare sp. nov. for euvesperins A and B producing Metarhizium strains. Mycoscience 2019, 60, 313–318. [Google Scholar] [CrossRef]
  32. Chen, Z.H.; Yang, X.N.; Sun, N.J.; Xu, L.; Zheng, Y.; Yang, Y.M. Species diversity and vertical distribution characteristics of Metarhizium in Gaoligong Mountains, southwestern China. Biodivers. Sci. 2018, 26, 1308–1317. [Google Scholar] [CrossRef]
  33. Wen, T.C.; Xiao, Y.P.; Han, Y.; Huang, S.K.; Zha, L.S.; Hyde, K.; Kang, J.C. Multigene phylogeny and morphology reveal that the Chinese medicinal mushroom ‘Cordyceps gunnii’ is Metacordyceps neogunnii sp. nov. Phytotaxa 2017, 302, 27. [Google Scholar] [CrossRef]
  34. Lopes, R.B.; Souza, D.A.; Rocha, L.F.N.; Montalva, C.; Luz, C.; Humber, R.A.; Faria, M. Metarhizium alvesii sp. nov.: A new member of the Metarhizium anisopliae species complex. J. Invertebr. Pathol. 2018, 151, 165–168. [Google Scholar] [CrossRef]
  35. Gutierrez, A.C.; Leclerque, A.; Manfrino, R.G.; Luz, C.; Ferrari, W.A.O.; Barneche, J.; Garcia, J.J.; Lastra, C.C.L. Natural occurrence in Argentina of a new fungal pathogen of cockroaches, Metarhizium argentinense sp. nov. Fungal Biol. 2019, 123, 364–372. [Google Scholar] [CrossRef]
  36. Chen, Z.H.; Xu, L.; Yang, X.N.; Zhang, Y.G.; Yang, Y.M. Metarhizium baoshanense sp. nov., a new entomopathogen fungus from Southwestern China. Pak. J. Zool. 2018, 50, 1739–1746. [Google Scholar] [CrossRef]
  37. Nishi, O.; Shimizu, S.; Sato, H. Metarhizium bibionidarum and M. purpureogenum: New species from Japan. Mycol. Prog. 2017, 16, 987–998. [Google Scholar] [CrossRef]
  38. Yamamoto, K.; Ohmae, M.; Orihara, T. Metarhizium brachyspermum sp. nov. (Clavicipitaceae), a new species parasitic on Elateridae from Japan. Mycoscience 2020, 61, 37–42. [Google Scholar] [CrossRef]
  39. Kepler, R.M.; Humber, R.A.; Bischoff, J.F.; Rehner, S.A. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 2014, 106, 811–829. [Google Scholar] [CrossRef]
  40. Nishi, O.; Iiyama, K.; Yasunaga-Aoki, C.; Shimizu, S. Phylogenetic status and pathogenicity of Metarhizium majus isolated from a fruit beetle larva in Japan. Mycol. Prog. 2015, 14, 10. [Google Scholar] [CrossRef]
  41. Chen, W.H.; Han, Y.F.; Liang, J.D.; Liang, Z.Q.; Jin, D.C. Metarhizium dendrolimatilis, a novel Metarhizium species parasitic on Dendrolimus sp. larvae. Mycosphere 2017, 8, 31–37. [Google Scholar] [CrossRef]
  42. Bischoff, J.F.; Rehner, S.A.; Humber, R.A. Metarhizium frgidum sp. nov.: A cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia 2006, 98, 737–745. [Google Scholar] [CrossRef]
  43. Chen, Z.H.; Zhang, Y.G.; Yang, X.N.; Chen, K.; Liu, Q.; Xu, L. A new fungus Metarhizium gaoligongense from China. Int. J. Agric. Biol. 2018, 20, 2271–2276. [Google Scholar]
  44. Sigler, L.; Gibas, C.F.C.; Kokotovic, B.; Bertelsen, M.F. Disseminated mycosis in veiled chameleons (Chamaeleo calyptratus) caused by Chamaeleomyces granulomatis, a new fungus related to Paecilomyces viridis. J. Clin. Microbiol. 2010, 48, 3182–3192. [Google Scholar] [CrossRef] [PubMed]
  45. Thanakitpipattana, D.; Tasanathai, K.; Mongkolsamrit, S.; Khonsanit, A.; Lamlertthon, S.; Luangsa-ard, J.J. Fungal pathogens occurring on Orthopterida in Thailand. Persoonia 2020, 44, 140–160. [Google Scholar] [CrossRef]
  46. Luz, C.; Rocha, L.F.N.; Montalva, C.; Souza, D.A.; Botelho, A.; Lopes, R.B.; Faria, M.; Delalibera, I. Metarhizium humberi sp. nov. (Hypocreales: Clavicipitaceae), a new member of the PARB clade in the Metarhizium anisopliae complex from Latin America. J. Invertebr. Pathol. 2019, 166, 9. [Google Scholar] [CrossRef] [PubMed]
  47. Wen, T.C.; Zha, L.S.; Xiao, Y.P.; Wang, Q.; Kang, J.C.; Hyde, K.D. Metacordyceps shibinensis sp. nov. from larvae of Lepidoptera in Guizhou Province, southwest China. Phytotaxa 2015, 226, 51–62. [Google Scholar] [CrossRef]
  48. Perdomo, H.; Cano, J.; Gené, J.; García, D.; Hernández, M.; Guarro, J. Polyphasic analysis of Purpureocillium lilacinum isolates from different origins and proposal of the new species Purpureocillium lavendulum. Mycologia 2013, 105, 151–161. [Google Scholar] [CrossRef] [PubMed]
  49. Johnson, D.; Sung, G.H.; Hywel-Jones, N.L.; Luangsa-Ard, J.J.; Bischoff, J.F.; Kepler, R.M.; Spatafora, J.W. Systematics and evolution of the genus Torrubiella (Hypocyeales, Ascomycota). Mycol. Res. 2009, 113, 279–289. [Google Scholar] [CrossRef]
  50. Chaverri, P.; Bischoff, J.F.; Evans, H.C.; Hodge, K.T. Regiocrella, a new entomopathogenic genus with a pycnidial anamorph and its phylogenetic placement in the Clavicipitaceae. Mycologia 2005, 97, 1225–1237. [Google Scholar] [CrossRef]
  51. Kepler, R.M.; Sung, G.H.; Harada, Y.; Tanaka, K.; Tanaka, E.; Hosoya, T.; Bischoff, J.F.; Spatafora, J.W. Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea_(Clavicipitaceae). Am. J. Bot. 2012, 99, 552–561. [Google Scholar] [CrossRef]
  52. Sung, G.H.; Shrestha, B.; Han, S.K.; Kim, S.Y.; Sung, J.M. Growth and cultural characteristics of Cordyceps cardinalis collected from Korea. Mycobiology 2010, 38, 274–281. [Google Scholar] [CrossRef]
  53. Evans, H.C. Entomogenous fungi in tropical forest ecosystems: An appraisal. Ecol. Entomol. 1982, 7, 47–60. [Google Scholar] [CrossRef]
  54. Mantzoukas, S.; Kitsiou, F.; Natsiopoulos, D.; Eliopoulos, P.A. Entomopathogenic fungi: Interactions and applications. Encyclopedia 2022, 2, 646–656. [Google Scholar] [CrossRef]
  55. Wang, Y.H.; Ban, S.; Wang, W.J.; Li, Y.; Wang, K.; Kirk, P.M.; Yao, Y.J. Pleurocordyceps gen. nov. for a clade of fungi previously included in Polycephalomyces based on molecular phylogeny and morphology. J. Syst. Evol. 2021, 59, 1065–1080. [Google Scholar] [CrossRef]
Figure 1. Maximum likelihood (ML) phylogenetic tree of Blackwellomyces inferred from five-gene (nrSSU, nrLSU, tef1, rpb1 and rpb2) dataset. Values above branches are ML bootstrap proportions (BP, left) and Bayesian posterior probabilities (PP, right). BP values < 50% and PP values < 0.70 were not shown.
Figure 1. Maximum likelihood (ML) phylogenetic tree of Blackwellomyces inferred from five-gene (nrSSU, nrLSU, tef1, rpb1 and rpb2) dataset. Values above branches are ML bootstrap proportions (BP, left) and Bayesian posterior probabilities (PP, right). BP values < 50% and PP values < 0.70 were not shown.
Forests 14 02333 g001
Figure 2. Maximum likelihood (ML) phylogenetic tree of Metarhizium and related Clavicipitaceae species inferred from f-gene (nrSSU, nrLSU, tef1, rpb1 and rpb2) dataset. Values above branches are ML bootstrap proportions (BP, left) and Bayesian posterior probabilities (PP, right). BP values < 50% and PP values < 0.70 were not shown.
Figure 2. Maximum likelihood (ML) phylogenetic tree of Metarhizium and related Clavicipitaceae species inferred from f-gene (nrSSU, nrLSU, tef1, rpb1 and rpb2) dataset. Values above branches are ML bootstrap proportions (BP, left) and Bayesian posterior probabilities (PP, right). BP values < 50% and PP values < 0.70 were not shown.
Forests 14 02333 g002
Figure 3. Macro- and microscopic features of Blackwellomyces kaihuaensis (HMAS 285455, holotype): (a,b) stromata; (c,d) fertile part; (eg) perithecia; (hk) asci; (l,m) ascus tip, arrows indicate apical cap; (np) ascospores with septations (arrows); (q) colony grows for 10 days on PDA; (r) colony grows for 10 days on OA; (s,t) arrangement of conidia. Scale bars: (a) = 5 mm; (bd) = 2 mm; (ek), (np) = 100 µm; (l,m), (s,t) = 10 µm.
Figure 3. Macro- and microscopic features of Blackwellomyces kaihuaensis (HMAS 285455, holotype): (a,b) stromata; (c,d) fertile part; (eg) perithecia; (hk) asci; (l,m) ascus tip, arrows indicate apical cap; (np) ascospores with septations (arrows); (q) colony grows for 10 days on PDA; (r) colony grows for 10 days on OA; (s,t) arrangement of conidia. Scale bars: (a) = 5 mm; (bd) = 2 mm; (ek), (np) = 100 µm; (l,m), (s,t) = 10 µm.
Forests 14 02333 g003
Figure 4. Macro- and microscopic features of Metarhizium putuoense (HMAS 285457, holotype): (ad) stromata; (e,f) fertile part; (gj) perithecia; (k,l) asci; (m) ascus tip, arrow indicates apical cap; (n) ascospores with septations (arrows); (o) colony grows for 14 days on PDA; (p) colony grows for 14 days on OA; (q) germination of conidia; (r) conidia; (s) chlamydospores. Scale bars: (af) = 5 mm; (gk) = 100 µm; (ln,qs) = 10 µm.
Figure 4. Macro- and microscopic features of Metarhizium putuoense (HMAS 285457, holotype): (ad) stromata; (e,f) fertile part; (gj) perithecia; (k,l) asci; (m) ascus tip, arrow indicates apical cap; (n) ascospores with septations (arrows); (o) colony grows for 14 days on PDA; (p) colony grows for 14 days on OA; (q) germination of conidia; (r) conidia; (s) chlamydospores. Scale bars: (af) = 5 mm; (gk) = 100 µm; (ln,qs) = 10 µm.
Forests 14 02333 g004
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Y.; Zhao, X.-C.; Wu, L.-X.; Wang, Y.; Xu, A.; Lin, W.-F. Blackwellomyces kaihuaensis and Metarhizium putuoense (Hypocreales), Two New Entomogenous Fungi from Subtropical Forests in Zhejiang Province, Eastern China. Forests 2023, 14, 2333. https://doi.org/10.3390/f14122333

AMA Style

Li Y, Zhao X-C, Wu L-X, Wang Y, Xu A, Lin W-F. Blackwellomyces kaihuaensis and Metarhizium putuoense (Hypocreales), Two New Entomogenous Fungi from Subtropical Forests in Zhejiang Province, Eastern China. Forests. 2023; 14(12):2333. https://doi.org/10.3390/f14122333

Chicago/Turabian Style

Li, Yi, Xin-Chang Zhao, Li-Xia Wu, Yu Wang, Ao Xu, and Wen-Fei Lin. 2023. "Blackwellomyces kaihuaensis and Metarhizium putuoense (Hypocreales), Two New Entomogenous Fungi from Subtropical Forests in Zhejiang Province, Eastern China" Forests 14, no. 12: 2333. https://doi.org/10.3390/f14122333

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop