Next Article in Journal
Early Growth Characterization and C:N:P Stoichiometry in Firmiana simplex Seedlings in Response to Shade and Soil Types
Next Article in Special Issue
Blackwellomyces kaihuaensis and Metarhizium putuoense (Hypocreales), Two New Entomogenous Fungi from Subtropical Forests in Zhejiang Province, Eastern China
Previous Article in Journal
Improving Forest Canopy Height Estimation Using a Semi-Empirical Approach to Overcome TomoSAR Phase Errors
Previous Article in Special Issue
An Integrative Taxonomic Study of Parasola (Psathyrellaceae, Fungi) Reveals a New Saprotrophic Species from European Temperate Deciduous Forests
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Crinipellis deutziae, Marasmius pinicola spp. nov., and C. rhizomaticola (Agaricales, Basidiomycota) New to China from Beijing

1
Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
2
National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
*
Authors to whom correspondence should be addressed.
Forests 2023, 14(7), 1480; https://doi.org/10.3390/f14071480
Submission received: 8 June 2023 / Revised: 2 July 2023 / Accepted: 16 July 2023 / Published: 19 July 2023
(This article belongs to the Special Issue Fungal Biodiversity, Systematics, and Evolution)

Abstract

:
Specimens of Crinipellis and Marasmius (Marasmiaceae) collected from Beijing, North China, were studied by morphological and molecular methods. Phylogenetic analyses were performed separately for the two genera based on ITS sequence data. Two new species, C. deutziae and M. pinicola, were found, and C. rhizomaticola was reported from China for the first time. Crinipellis deutziae is characterized by small basidiocarps, large and variably shaped basidiospores measuring 8.8–11 × 7.5–9.5 µm, the presence of both cheilocystidia and pleurocystidia, and growing on Deutzia parviflora. Marasmius pinicola is characterized by small basidiocarps, cylindrical, reniform to phaseoliform basidiospores measuring 6–8 × 3.5–4.2 µm, often capitate cheilocystidia, and pleurocystidia, and growing on fallen leaves of Pinus tabuliformis. Descriptions and illustrations are provided for the three species. The results of this study contribute to the knowledge of the species diversity of macro-fungi in Beijing.

1. Introduction

Crinipellis Pat., typified by Agaricus stipitarius Fr. (=C. scabella (Alb. & Schwein.) Murrill), has a worldwide distribution, and now 193 names are included under the genus (http://www.indexfungorum.org, accessed on 1 May 2023). Most species are saprotrophic, but there are a few parasitic species, such as C. siparunae Singer, C. pseudostipitaria Singer, and C. scabella [1]. Morphologically, species of Crinipellis are characterized by the pileus and usually also stipe covered with thick-walled, dextrinoid, hair-like terminal cells [2]. Previous phylogenetic studies showed that Crinipellis is sister to Chaetocalathus Singer, Moniliophthora H.C. Evans, Stalpers, Samson & Benny, and Marasmius Fr. sensu stricto [1]. Although the genus in Asia has been intensively studied and many new species have been described, only two species, C. bidens T. Bau and C. floccosa T.H. Li, Y.W. Xia & W.Q. Deng, were described in China recently [1,3,4,5,6,7,8,9].
Marasmius, typified by M. rotula (Scop.) Fr., is characterized by the thin and small to large and robust basidiocarps, generally with membranous, dull, dry, white to strongly pigmented pilei, lamellate hymenophore, mostly tough and strongly pigmented stipe, hyaline, smooth and inamyloid spores, and a hymeniform pileipellis of smooth or diverticulate cells [2,10,11,12,13,14]. There are 2054 records of Marasmius in Index Fungorum (http://www.indexfungorum.org, accessed on 1 May 2023), but about 600 species are accepted [15,16,17,18]. Singer [2] divided this genus into twelve sections: Androsacei, Alliacei, Epiphylli, Fusicystides, Globulares, Hygrometrici, Inaequales, Leveilleani, Marasmius, Neosessiles, Scotophysini, and Sicci, but Wilson and Desjardin [12] restricted it to six sections, viz. Sicci, Globulares, Marasmius, Neosessiles, Leveilleani, and Hygrometrici. Jenkinson et al. [19] established the genus Cryptomarasmius T.S. Jenkinson & Desjardin based on the section Hygrometrici.
The species diversity of macro-fungi in Beijing, China, is relatively rich because of the special topography with many kinds of plants. Intensive investigations in Beijing were carried out by some mycologists in recent years, and several new species were described [20,21,22,23,24,25,26]. Recently, careful morphological and molecular studies on the specimens of Marasmiaceae revealed two additional new species of Crinipellis and Marasmius and a new Chinese record C. rhizomaticola, which are described and illustrated as follows. The results of this study contribute to the knowledge of the species diversity of macro-fungi in Beijing.

2. Materials and Methods

2.1. Morphological Studies

All the studied specimens were processed and deposited in the fungoria of Beijing Forestry University, Beijing, China (BJFC) and the National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control (NIOHP, China CDC). Macro-morphological descriptions were based on field notes and color photos of basidiocarps. Color codes followed Petersen [27]. In the description of basidiospores, the abbreviation [n/m/p] means ‘n’ basidiospores measured from ‘m’ basidiocarps of ‘p’ collections; dimensions for basidiospores are given using the following notation form (a−) b–c (−d). The range ‘b–c’ contains a minimum of 90% of the measured values, extreme values (a, d) are given in parentheses. L means spore length (arithmetic average of all spores). W means spore width (arithmetic average of all spores). Q means the “length/width ratio” of a spore in side-view; Qm means the average Q of all basidiospores measured ± sample standard deviation. The following abbreviations were used: IKI = Melzer’s reagent, IKI− = neither amyloid nor dextrinoid, KOH = 5% potassium hydroxide, CB = cotton blue, CB− = acyanophilous.

2.2. DNA Extraction and Sequencing

The Phire® Plant Direct PCR Kit (Finnzymes Oy, Espoo, Finland) was used to obtain PCR products from dried specimens, according to the manufacturer’s instructions, with some modifications [28]. ITS5/ITS4 were used to amplify the internal transcribed spacer (ITS) regions [29]. Tang et al. PCR procedures were followed [28]. All newly generated sequences in this study were deposited in GenBank (OQ538294–OQ538297, OQ941785, OQ941786).

2.3. Phylogenetic Analyses

Phylogenetic analyses of Crinipellis and Marasmius were performed separately based on the ITS sequences. Marasmius rotula and C. zonata (Peck) Pat. were selected as the outgroups for the two datasets, respectively. The ITS sequences were aligned using MAFFT v.74 [30] with the G-INS-I iterative refinement algorithm and optimized manually in BioEdit v.7.0.5.3. Maximum parsimony (MP), maximum likelihood (ML) analyses, and Bayesian inference (BI) were carried out by using PAUP* v.4.0b10, RAxML v.8.2.10, and MrBayes 3.2.6, respectively. The best-fit substitution model was estimated with jModeltest v.2.17. Detailed methods of the analyses referred to Li et al. [25]. MP, ML, and BI were carried out for the Crinipellis dataset, while only ML was applied to the Marasmius dataset. Four Markov chains were run for 2,000,000 for the Crinipellis dataset until the split deviation frequency value was lower than 0.01.

3. Results

3.1. Phylogenetic Analyses

The Crinipellis dataset contained 69 ITS sequences representing 42 ingroup taxa of Crinipellis and related genera as well as the outgroup (Table 1). The aligned length was 903 characters, of which 373 were parsimony informative. MP analysis yielded 38 equally parsimonious trees (TL = 1649, CI = 0.481, RI = 0.800, RC = 0.385, HI = 0.519). The Marasmius dataset included 303 ITS sequences representing 197 ingroup taxa and the outgroup (Table 1). The aligned length was 1490 characters. jModelTest suggested GTR + I + G as the best-fit model of nucleotide evolution for the two datasets.
The average standard deviation of split frequencies of BI was 0.008780 for the Crinipellis dataset at the end of the run. ML and BI analyses resulted in almost identical tree topologies compared to the MP analysis for this dataset. The MP tree of Crinipellis is shown in Figure 1, with the parsimony bootstrap values (≥50%, first value), likelihood bootstrap values (≥50%, second value), and Bayesian posterior probabilities (≥0.95, third value) labeled along the branches. The ML tree of Marasmius is shown in Figure 2, with the likelihood bootstrap values (≥50%) labelled along the branches. The information of each sample, including GenBank accession numbers, voucher specimens/strains, and locality, was listed together with the taxon name in the phylogenetic trees.
In the Crinipellis tree, C. deutziae formed a distinct lineage sister to C. scabella, while the two samples of C. rhizomaticola from China and Korea formed a strongly supported lineage. In the Marasmius tree, M. pinicola is sister to M. spegazzinii (Kuntze) Sacc. & P. Syd. and M. sullivantii Mont.

3.2. Taxonomy

Crinipellis deutziae Jing Si, S.H. He & Hai J. Li, sp. nov. Figure 3 and Figure 4.
MycoBank: MB848969
Etymology: ‘deutziae’ refers to the host tree of Deutzia parviflora.
Diagnosis: Crinipellis deutziae is characterized by small basidiocarps, cinnamon-buff, cinnamon, brownish orange, scarlet, brownish red to reddish brown at pileal disc, large, globose, subglobose, broadly ellipsoid, fusoid-ellipsoid to lacrimoid basidiospores, producing both cheilocystidia and pleurocystidia and gregarious on dead or living branch of D. parviflora.
Type: China. Beijing, Mentougou District, Xiaolongmen National Forest Park, alt: 1220 m, N: 39°57′32″ E: 115°25′38″, on a dead or living branch of D. parviflora, 3 July 2022, Li20220703-12 (Holotype). GenBank accession number for ITS: OQ538295.
Description: pileus 3–8 mm in diameter, campanulate when young, hemispherical to plane with age, umbilicate, distinctively zonate, with floccose squamules, cinnamon-buff, cinnamon, brownish orange, scarlet, brownish red to reddish brown at the disc, paler towards the margin, ash-grey to cream. Lamellae 0.5–2 mm broad, with 14–22 complete lamellae and 1–3 lamellulae between two complete lamellae, free, white to cream. Stipe 4–12 × 0.5–1 mm, cylindrical, equal, tomentose, insititious, cream to ash-grey at apex, through cinnamon-buff to brownish red towards base. No odor or taste.
Microstructure: basidiospores [170/4/3] (8−)8.8–11(−12.4) × (7−)7.5–9.5(−11) µm, L = 9.98 µm, W = 8.39 µm, Q = (1−)1.08–1.36(−1.43), Qm = 1.19 ± 0.09, hyaline, globose, subglobose, broadly ellipsoid, fusoid-ellipsoid to lacrimoid, mostly thin-walled, rarely thick-walled, smooth, IKI−, CB−. Basidia are clavate, with four sterigmata, 30–35 × 10–12 µm; basidioles are similar to basidia but slightly smaller. Cheilocystidia 32–84 × 8–10 µm, clavate, subcylindrical to irregular, mostly with one to several projections at the top, thin- to unevenly thick-walled, hyaline. Pleurocystidia rare, 24–36 × 9–11 µm, fusoid, thin-walled, hyaline. Pileipellis is a cutis of radially arranged, cylindrical or inflated, thin- to slightly thick-walled, IKI−, CB−, up to 12 µm wide hyphae. Pileus hairs 360–700 × 3–8 µm, hyaline in KOH, thick-walled, with acute or subacute apex, septate, strongly dextrinoid. Hyphae of pileus context 4–8 µm in diameter, hyaline, thin-walled, parallel, IKI−, CB−. Hyphae of lamellae and lamellulae trama 2.5–7 µm in diameter, hyaline, thin-walled, parallel, IKI−, CB−. Stipitipellis a layer of parallel hyphae, 3–7 µm in diameter, hyaline, thin-walled. Stipe hairs are similar to pileus hairs, 185–290 × 3–5 µm, hyaline in KOH, thick-walled, with acute or subacute apex, septate, and strongly dextrinoid. Clamp connections are present at all septa.
Habitat and distribution: gregarious on a dead or living branch of D. parviflora, at present only discovered in Beijing, China, in summer.
Additional specimens examined (paratypes): China. Beijing, Mentougou District, Xiaolongmen National Forest Park, alt: 1277 m, N: 39°57′29″ E: 115°25′27″, on dead or living branch of D. parviflora, 3 July 2022, Li20220703-21, GenBank accession number for ITS: OQ538296; the same location and habitat, alt: 1249 m, N: 39°57′30″ E: 115°25′27″, 3 July 2022, Li20220703-22.
Remarks: in the phylogenetic tree (Figure 1), C. deutziae formed a distinct lineage sister to C. scabella and C. rhizomaticola. Crinipellis scabella can be easily distinguished from C. deutziae because the basidiocarps rarely have bifurcate or trifurcate cheilocystidia [9]. Crinipellis rhizomaticola resembles C. deutziae by fusoid-ellipsoid to lacrimoid basidiospores (8.5–10 × 4–5 µm), clavate basidia (35 × 3–10 µm) and fusoid pleurocystidia (34–42 × 7.5–9.5 µm) but differs by larger basidiocarps (pileus 12–22 mm in diameter, stipe 40–60 × 0.75–1.25 mm), smaller cheilocystidia (17–32 × 4–7 µm), pileus hairs and stipe hairs that turn olive green in KOH [5]. Crinipellis setipes (Peck) Singer, described from northeastern North America [31], resembles C. deutziae in having a similarly sized pileus but differs in having smaller basidiospores (7–9 × 4–5 µm), basidia (16–24 × 4–6 µm), cheilocystidia (12–15 × 4–5 µm) and lacking pleurocystidia [1].
Crinipellis rhizomaticola Antonín, R. Ryoo & H.D. Shin, Mycotaxon, 108: 433 (2009) (Figure 5 and Figure 6).
Description: pileus 5–10 mm in diameter, conical to campanulate when young, convex-conical with age, umbilicate, with floccose squamules, orange-brown to reddish brown at the disc, paler towards the margin, brownish orange to orange-brown. Lamellae 0.5–1 mm broad, with 16–25 complete lamellae and 2–3 lamellulae between two complete lamellae, free, white to cream. Stipe 25–40 × 0.5–5 mm, cylindrical, slightly broadened at base, tomentose, insititious, longitudinally striate, pale brownish at apex, through brown to dark brown towards the base, entirely covered with hairs concolorous with pileus center or slightly paler. No odor or taste.
Microstructure:basidiospores [60/2/1] 7–9.2(−10) × (4−)4.5–5.7(−5.8) µm, L = 8.43 µm, W = 5.05 µm, Q = (1.4−)1.46–1.96(−2.07), Qm = 1.168 ± 0.15, hyaline, fusoid-ellipsoid to lacrimoid, thin-walled, smooth, IKI−, CB−. Basidia clavate to cylindrical, with four sterigmata, 28–37 × 7–8 µm; basidioles are similar to basidia, but slightly smaller. Cheilocystidia 23–35 × 5–8.5 µm, clavate, subcylindrical to fusoid, with one to two projections at the top, thin-walled, hyaline. Pleurocystidia 24–38 × 5–8 µm, fusoid, thin-walled, hyaline. Pileipellis is a cutis of radially arranged, cylindrical or inflated, thin- to slightly thick-walled, IKI−, CB−, pale ochraceous walls in KOH, 5–14 µm wide hyphae. Pileus hairs 120–600 × 3–7 µm, pale yellowish in H2O, olivaceous in KOH, thick-walled, with acute or obtuse apex, septate, strongly dextrinoid. Hyphae of lamellae and lamellulae trama 4–8 µm in diameter, hyaline, thin-walled, parallel, IKI−, CB−. Stipitipellis a layer of parallel hyphae, 5–7 µm in diameter, pale yellowish in H2O and olivaceous in KOH thick-walled. Stipe hairs are similar to pileus hairs, 120–215 × 6–8 µm, pale yellowish in H2O, olivaceous in KOH, thick-walled, with acute or subacute apex, septate, strongly dextrinoid. Clamp connections are present at all septa.
Habitat and distribution: gregarious on buried angiosperm branch, discovered in Beijing, China, and its type locality, Republic of Korea, in summer.
Specimen examined: China. Beijing, Haidian District, Olympic Forest Park, on the ground, 28 July 2020, He 7791 (BJFC038936), GenBank accession number for ITS: OQ538297.
Remarks: when compared to the type description, the Chinese collection has slightly shorter and wider basidiospores (7–9.2 × 4.5–5.7 µm vs. 8.5–10 × 4–5 µm, [5]), cheilocystidia with fewer projections, fusoid pleurocystidia, and shorter stipe hairs [5]. In the phylogenetic tree (Figure 1), the Chinese sample (He 7791) and the type specimen (VA 08.55 or BRNM712570) of the species formed a strongly supported lineage.
Marasmius pinicola Jing Si, S.H. He & Hai J. Li, sp. nov. Figure 7 and Figure 8.
MycoBank: MB848970
Etymology: ‘pinicola’ refers to the host tree of Pinus tabuliformis.
Diagnosis: Marasmius pinicola is characterized by small basidiocarps, pileal surface yellowish brown to cinnamon when young, yellowish brown, cinnamon to orange-brown at the center, and pale brownish to almost white towards margin with age, cylindrical, reniform to phaseoliform basidiospores, often capitate cheilocystidia and pleurocystidia, hymeniform pileipellis with basidia scattered within, and growing on fallen leaves of P. tabuliformis.
Type: China. Beijing, Dongcheng District, Temple of Heaven, alt: 40 m, N: 39°52′41″ E: 116°24′29″, on decayed leaf litter of P. tabuliformis, 6 July 2022, Li20220706-15 (Holotype). GenBank accession number for ITS: OQ941786.
Description: pileus 10–40 mm in diameter, hemispherical, convex-conical with broad, obtuse umbo and inflexed margin when young, then plano-convex to applanate with slightly undulate margin and low obtuse central umbo, center smooth or slightly rugulose, glabrous, crenulate at margin, dry, yellowish brown to cinnamon when young, yellowish brown, cinnamon to orange-brown at center with age, paler towards margin, pale brownish to almost white. Lamellae 1–4 mm broad, with 20–28 complete lamellae and 2–3 lamellulae between two complete lamellae, free, white to cream. Stipe 20–55 × 1–4 mm, cylindrical, equal or slightly swollen at base, pruinose all over, rarely twisted, base white tomentose, surface dull, dry, tough-elastic, cream to buff at apex, through pinkish-buff to cinnamon-buff towards the base. No odor or taste.
Microstructure: basidiospores [80/3/2] 6–8 × 3.5–4.2(−4.8) µm, L = 6.92 µm, W = 3.93 µm, Q = (1.46−)1.56–2(−2.06), Qm = 1.77 ± 0.13, hyaline, cylindrical, reniform to phaseoliform, thin-walled, smooth, IKI−, CB−. Basidia clavate, mostly with four sterigmata, rarely with two sterigmata, 19–34 × 5–7 µm; basidioles are similar to basidia, but slightly smaller. Cheilocystidia 28–40 × 5–8 µm, clavate, versiform, clavate, subfusoid to subcylindrical, ventricose or with 1–4 constrictions near the apex, which is narrower and somewhat monilioid, or only capitate to mucronate, thin-walled, hyaline. Pleurocystidia scattered, 26–46 × 5–12 µm, similar to cheilocystidia. Pileipellis hymeniform, with 2- or 4-spored basidia scattered, 25–30 × 5–9 µm, clavate, hyaline, thin-walled, IKI−, CB−. Hyphae of pileus context 5–15 µm in diameter, hyaline, thin-walled, interwoven, dextrinoid, CB−. Hyphae of lamellar trama 6–19 µm in diameter, hyaline, thin-walled, parallel, dextrinoid, CB−. Stipitipellis a layer of parallel hyphae, 3–8.5 µm in diameter, hyaline to yellowish, thin- to thick-walled, IKI−, CB−. Clamp connections are present at all septa.
Habitat and distribution: scattered to gregarious on decayed leaf litter of P. tabuliformis, at present only discovered in Beijing, China, in summer.
Additional specimens examined (paratypes): China. Beijing, Dongcheng District, Temple of Heaven, alt: 40 m, N: 39°52′41″ E: 116°24′29″, on decayed leaf litter of P. tabuliformis, 6 July 2022, Li20220706-13. GenBank accession number for ITS: OQ941785.
Remarks: morphologically, M. pinicola matches well with the concept of section Globulares [16,32,33,34]. Marasmius oreades (Bolton) Fr. and M. nivicola Har. Takah. share similar small basidiocarps and similar-sized basidiospores (6–9 × 4–5 µm for M. oreades, 6–8 × 3–4 µm for M. nivicola) with M. pinicola but can be easily distinguished by the absence of pleurocystidia [35,36]. In the phylogenetic tree (Figure 2), M. pinicola formed a distinct lineage sister to M. spegazzinii, which is similar to M. pinicola by sharing the brown pileal surface and cylindrical basidiospores but differs in having larger basidiocarps (pileus 21–45 mm in diameter, stipe 46–85 × 1.5–4 mm), larger basidiospores (7.5–11.3 × 2.5–3.5 µm), and smaller cheilocystidia (11.3–22.5 × 6.3–10 µm, [34]). The ITS sequence similarity between M. pinicola (OQ941785) and M. spegazzinii (KP635197) is 90.91%, and there are 60 base pair differences, including gaps between the two sequences.

4. Discussion

The Marasmiaceae includes about ten genera, viz. Amyloflagellula Singer, Brunneocorticium Sheng H. Wu, Campanella Henn., Chaetocalathus, Crinipellis, Hymenogloea Pat., Marasmius, Moniliophthora, Neocampanella Nakasone, Hibbett & Goranova, and Tetrapyrgos E. Horak [37,38]. Among them, Brunneocorticium and Neocampanella are newly described corticioid fungi with strictly resupinate basidiocarps based on molecular data [37]. However, the mushroom genera Collybia (Fr.) Staude, Gymnopus (Pers.) Gray, Marasmiellus Murrill, and Mycena (Pers.) Roussel that are morphologically similar to Marasmius are not nested within the Marasmiaceae in phylogeny.
The species of Marasmius sensu lato are commonly found on leaves, and wood debris in forest litter, and numerous species were described under the genus. Although many species have been transferred to many other genera, the infrageneric classification of Marasmius sensu stricto is still unclear [14]. The ITS sequences are very helpful for species-level investigations, and many cryptic species were discovered based on a single gene. However, other loci, especially the protein-coding genes, should be used in future studies in order to resolve the phylogeny of Marasmius s.s. and its related genera.

5. Conclusions

The present study reveals two new species and a new Chinese record of Marasmiaceae from Beijing based on molecular and morphological evidence. It is a part of the comprehensive study of macro-fungi diversity in Beijing, which was poorly studied and only drew the intensive attention of some mycologists in recent years [20,21,22,23,24,25,26]. Many new taxa from this area will be found in future studies, with more and more specimens of some large, under-studied groups being collected and sequenced. Our study also shows that plant hosts are important in the identification of fungi, even when they are saprotrophic. Coevolution between fungi and host plants might commonly occur in the history of evolution.

Author Contributions

Conceptualization, S.-H.H., J.S. and H.-J.L.; methodology, S.-H.H., J.S. and H.-J.L.; software, Y.L., S.-H.H. and H.-J.L.; validation, Y.-Z.Z., J.-Q.L., W.-Y.S., Y.L., S.-H.H., J.S. and H.-J.L.; formal analysis, Y.L.; investigation, Y.L., S.-H.H., Y.-Z.Z., J.-Q.L., W.-Y.S., J.S. and H.-J.L.; resources, S.-H.H. and H.-J.L.; data curation, Y.L., S.-H.H., J.S. and H.-J.L.; writing—original draft preparation, Y.L., S.-H.H. and H.-J.L.; writing—review and editing, S.-H.H., J.S. and H.-J.L.; visualization, Y.-Z.Z. and J.-Q.L.; supervision, S.-H.H., J.S. and H.-J.L.; project administration, S.-H.H., J.S. and H.-J.L.; funding acquisition, S.-H.H., J.S. and H.-J.L. All authors have read and agreed to the published version of the manuscript.

Funding

The research was financed by the National Natural Science Foundation of China (Nos. 32070005, 32270021, and 32070016).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kerekes, J.F.; Desjardin, D.E. A monograph of the genera Crinipellis and Moniliophthora from Southeast Asia including a molecular phylogeny of the nrITS region. Fungal Diver. 2009, 37, 101–152. [Google Scholar]
  2. Singer, R. The Agaricales in Modern Taxonomy, 4th ed.; Koeltz Scientific Books: Koenigstein, Germany, 1986. [Google Scholar]
  3. Takahashi, H. Three new species of Crinipellis found in Iriomote Island, southwestern Japan, and central Honshu, Japan. Mycoscience 2000, 41, 171–182. [Google Scholar] [CrossRef]
  4. Takahashi, H. Four new species of Crinipellis and Marasmius in eastern Honshu, Japan. Mycoscience 2002, 43, 343–350. [Google Scholar] [CrossRef]
  5. Antonín, V.; Ryoo, R.; Shin, H.D. Marasmioid and gymnopoid fungi of the Republic of Korea. 1. Three interesting species of Crinipellis (Basidiomycota, Marasmiaceae). Mycotaxon 2009, 108, 429–440. [Google Scholar] [CrossRef]
  6. Antonín, V.; Ryoo, R.; Ka, K.H.; Sou, H.D. Three new species of Crinipellis and one new variety of Moniliophthora (Basidiomycota, Marasmiaceae) described from the Republic of Korea. Phytotaxa 2014, 170, 86–102. [Google Scholar] [CrossRef] [Green Version]
  7. Xia, Y.W.; Li, T.H.; Deng, W.Q.; Xu, J. A new Crinipellis species with floccose squamules from China. Mycoscience 2015, 56, 476–480. [Google Scholar] [CrossRef]
  8. Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Hardy, G.E.S.J.; Crane, C.; Barrett, S.; Cano-Lira, J.F.; Le Roux, J.J.; Thangavel, R.; Guarro, J.; et al. Fungal Planet description sheets: 469–557. Persoonia 2016, 37, 218–403. [Google Scholar] [CrossRef]
  9. Liu, L.N.; Razaq, A.; Atri, N.S.; Bau, T.; Belbahri, L.; Bouket, A.C.; Chen, L.P.; Deng, C.; Ilyas, S.; Khalid, A.N.; et al. Fungal systematics and evolution: FUSE 4. Sydowia 2018, 70, 211–286. [Google Scholar]
  10. Singer, R. Marasmieae (Basidiomycetes–Tricholomataceae). Flora Neotrop. Monogr. 1976, 17, 1–347. [Google Scholar]
  11. Desjardin, D.E. The Genus Marasmius from the Southern Appalachian Mountains. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 1989. [Google Scholar]
  12. Wilson, A.W.; Desjardin, D.E. Phylogenetic relationships in the gymnopoid and marasmioid fungi (Basidiomycetes, euagaric clade). Mycologia 2005, 97, 667–679. [Google Scholar] [CrossRef]
  13. Antonín, V. Monograph of Marasmius, Gloiocephala, Palaeocephala and Setulipes in tropical Africa. Fungus Flora Trop. Afr. Meise 2007, 1, 1–164. [Google Scholar]
  14. Antonín, V.; Noordeloos, M.E. A Monograph of Marasmioid and Collybioid Fungi in Europe; IHW-Verlag: Eching, Germany, 2010. [Google Scholar]
  15. Lodge, D.J.; Chapela, I.; Samuels, G.; Uecker, F.A.; Desjardin, D.; Horak, E.; Milller, O.K.; Hennebert, G.L.; Decock, C.A.; Ammirati, J.; et al. A survey of patterns of diversity in non-lichenized fungi. Mitt. Eidgenöss. Forschungsanstalt Für Wald Schnee Und Landsch. 1995, 70, 157–173. [Google Scholar]
  16. Wannathes, N.; Desjardin, D.E.; Hyde, K.D.; Perry, B.A.; Lumyong, S. A monograph of Marasmius (Basidiomycota) from Northern Thailand based on morphological and molecular (ITS sequences) data. Fungal Divers. 2009, 37, 209–306. [Google Scholar]
  17. Deng, S.F. Taxonomy of Gymnopus and Preliminary Study of Marasmiaceae Resource in South China. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2016. [Google Scholar]
  18. Zhang, Q.Y.; Si, J.; Li, H.J. A new Marasmius species (Agaricales, Marasmiaceae) with sessile basidiomata growing on wood, from Yunnan, China. Phytotaxa 2023, 578, 169–179. [Google Scholar] [CrossRef]
  19. Jenkinson, T.S.; Perry, B.A.; Schaefer, R.E.; Desjardin, D.E. Cryptomarasmius gen. nov. is established in the Physalacriaceae to accommodate members of Marasmius section Hygrometrici. Mycologia 2014, 106, 86–94. [Google Scholar] [CrossRef]
  20. He, M.Q.; Hyde, K.D.; Wei, S.L.; Xi, Y.L.; Cheewangkoon, R.; Zhao, R.L. Three new species of Agaricus section Minores from China. Mycosphere 2018, 9, 189–201. [Google Scholar] [CrossRef]
  21. Chen, C.C.; Chen, C.Y.; Wu, S.H. Species diversity, taxonomy and multi–gene phylogeny of phlebioid clade (Phanerochaetaceae, Irpicaceae, Meruliaceae) of Polyporales. Fungal Divers. 2021, 111, 337–442. [Google Scholar] [CrossRef]
  22. Ling, Z.L.; Zhou, J.L.; Parra, L.A.; De Kesel, A.; Callac, P.; Cao, B.; He, M.Q.; Zhao, R.L. Four new species of Agaricus subgenus Spissicaules from China. Mycologia 2021, 113, 476–491. [Google Scholar] [CrossRef]
  23. Zhou, H.; Li, J.Q.; Hou, C.L. Two new species of the genus Geastrum from the Yanshan Montains in China. Mycosystema 2022, 41, 1–16. [Google Scholar] [CrossRef]
  24. Li, Y.; He, S.H. Taxonomy and phylogeny of brown-rot corticioid fungi in China: Coniophora beijingensis and Veluticeps subfasciculata spp. nov. Front. Microbiol. 2023, 14, 1133236. [Google Scholar] [CrossRef]
  25. Li, Y.; Chen, C.C.; He, S.H. New corticioid taxa in Phanerochaetaceae (Polyporales, Basidiomycota) from East Asia. Front. Microbiol. 2023, 14, 1093096. [Google Scholar] [CrossRef] [PubMed]
  26. Man, X.W.; Dai, Y.C.; Bian, L.S.; Zhou, M.; Zhao, H.; Vlasák, J. Two new species of Haploporus (Polyporales, Basidiomycota) from China and Ecuador based on morphology and phylogeny. Front. Cell. Infect. Microbiol. 2023, 13, 1133839. [Google Scholar] [CrossRef]
  27. Petersen, J.H. The Danish Mycological Society’s Colour-Chart; Foreningen til Svampekundskabens Fremme: Greve, Italy, 1996. [Google Scholar]
  28. Tang, L.X.; Zhang, Y.Z.; Liang, J.Q.; Jiang, S.F.; Si, J.; Li, H.J. Pyrofomes lagerstroemiae (Polyporaceae, Basidiomycota), a new species from Hubei Province, Central China. Phytotaxa 2023, 583, 191–198. [Google Scholar] [CrossRef]
  29. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
  30. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017, 20, bbx108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  31. Singer, R. A monographic study of the genera Crinipellis and Chaetocalathus. Lilloa 1942, 8, 441–534. [Google Scholar]
  32. Wannathes, N.; Desjardin, D.E.; Lumyong, S. Four new species of Marasmius section Globulares from Northern Thailand. Fungal Divers. 2009, 36, 155–163. [Google Scholar]
  33. Antonín, V.; Ryoo, R.; Shin, H.D. Marasmioid and gymnopoid fungi of the Republic of Korea. 2. Marasmius sect. Globulares. Persoonia 2010, 24, 49–59. [Google Scholar] [CrossRef] [Green Version]
  34. Oliveira, J.J.S.; Moncalvo, J.M.; Margaritescu, S.; Capelari, M. A morphological and phylogenetic evaluation of Marasmius sect. Globulares (Globulares-Sicci complex) with nine new taxa from the Neotropical Atlantic Forest. Persoonia 2020, 44, 240–277. [Google Scholar] [CrossRef]
  35. Treu, R. Marasmius oreades. IMI descriptions of fungi and bacteria. Mycopathologia 1996, 134, 39–60. [Google Scholar] [CrossRef]
  36. Takahashi, H. Two new species of Marasmius from eastern Honshu, Japan. Mycoscience 2000, 41, 539–543. [Google Scholar] [CrossRef]
  37. Nakasone, K.K.; Hibbett, D.S.; Goranova, G. Neocampanella, a new corticioid fungal genus, and a note on Dendrothele bispora. Botany 2009, 87, 875–882. [Google Scholar] [CrossRef] [Green Version]
  38. He, M.Q.; Zhao, R.L.; Hyde, K.D.; Begerow, D.; Kemler, M.; Yurkov, A.; McKenzie, E.H.C.; Raspé, O.; Kakishima, M.; Sánchez-Ramírez, S.; et al. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 2019, 99, 105–367. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Maximum parsimony analysis tree of the ITS sequences of Crinipellis and related genera. Branches are labelled with parsimony bootstrap values (≥50%, first), likelihood bootstrap values (≥50%, second), and Bayesian posterior probabilities (≥0.95, third). New species (pink) and new Chinese records (orange) are highlighted and set in bold.
Figure 1. Maximum parsimony analysis tree of the ITS sequences of Crinipellis and related genera. Branches are labelled with parsimony bootstrap values (≥50%, first), likelihood bootstrap values (≥50%, second), and Bayesian posterior probabilities (≥0.95, third). New species (pink) and new Chinese records (orange) are highlighted and set in bold.
Forests 14 01480 g001
Figure 2. Maximum likelihood analysis tree of the ITS sequences of Marasmius. Branches are labelled with likelihood bootstrap values (≥50%). New species are set in bold and highlighted.
Figure 2. Maximum likelihood analysis tree of the ITS sequences of Marasmius. Branches are labelled with likelihood bootstrap values (≥50%). New species are set in bold and highlighted.
Forests 14 01480 g002aForests 14 01480 g002bForests 14 01480 g002c
Figure 3. Basidiocarps of Crinipellis deutziae ((AC) holotype, bars = 5 mm).
Figure 3. Basidiocarps of Crinipellis deutziae ((AC) holotype, bars = 5 mm).
Forests 14 01480 g003
Figure 4. Microscopic structures of Crinipellis deutziae (Li20220703-12, holotype). (a) Basidiospores. (b) Basidia and basidioles. (c) Pleurocystidia. (d) Cheilocystidia. (e) Pileus hairs. Bars: a–e = 10 µm. Drawn by Hai-Jiao Li.
Figure 4. Microscopic structures of Crinipellis deutziae (Li20220703-12, holotype). (a) Basidiospores. (b) Basidia and basidioles. (c) Pleurocystidia. (d) Cheilocystidia. (e) Pileus hairs. Bars: a–e = 10 µm. Drawn by Hai-Jiao Li.
Forests 14 01480 g004
Figure 5. Basidiocarps of Crinipellis rhizomaticola ((A,B) He 7791, bar = 5 mm).
Figure 5. Basidiocarps of Crinipellis rhizomaticola ((A,B) He 7791, bar = 5 mm).
Forests 14 01480 g005
Figure 6. Microscopic structures of Crinipellis rhizomaticola (He 7791). (a) Basidiospores. (b) Basidia and basidioles. (c) Pleurocystidia. (d) Cheilocystidia. (e) Pileus hairs. (f) Stipe hairs. Bars: a–f = 10 µm. Drawn by Hai-Jiao Li.
Figure 6. Microscopic structures of Crinipellis rhizomaticola (He 7791). (a) Basidiospores. (b) Basidia and basidioles. (c) Pleurocystidia. (d) Cheilocystidia. (e) Pileus hairs. (f) Stipe hairs. Bars: a–f = 10 µm. Drawn by Hai-Jiao Li.
Forests 14 01480 g006
Figure 7. Basidiocarps of Marasmius pinicola (bar = 2 cm).
Figure 7. Basidiocarps of Marasmius pinicola (bar = 2 cm).
Forests 14 01480 g007
Figure 8. Microscopic structures of Marasmius pinicola (Li20220706-15). (a) Basidiospores. (b) Basidia and basidioles. (c) Pileipellis. (d) Cheilocystidia. (e) Pleurocystidia. Bars: a = 5 µm, b–e = 10 µm. Drawn by Hai-Jiao Li.
Figure 8. Microscopic structures of Marasmius pinicola (Li20220706-15). (a) Basidiospores. (b) Basidia and basidioles. (c) Pileipellis. (d) Cheilocystidia. (e) Pleurocystidia. Bars: a = 5 µm, b–e = 10 µm. Drawn by Hai-Jiao Li.
Forests 14 01480 g008
Table 1. Species and sequences used in the phylogenetic analyses. New species and the new Chinese record are set in bold; type specimens indicated with an asterisk (*).
Table 1. Species and sequences used in the phylogenetic analyses. New species and the new Chinese record are set in bold; type specimens indicated with an asterisk (*).
TaxaVoucherLocalityITS
Crinipellis actinophoraJFK78 (KLU-M)MalaysiaFJ167617
C. actinophoraJFK80 (KLU-M)MalaysiaFJ167618
C. bidensS14ChinaMH143792
C. bidensS142ChinaMH143793
C. birhizomorphaVA 12.95 (BRNM751593)KoreaKF380831
C. brasiliensisCMR UB 2053BrazilAY317137
C. brunneipurpureaJFK107 (KLU-M)IndonesiaFJ167645
C. brunneipurpureaJFK84 (KLU-M)IndonesiaFJ167646
C. brunnescensDED6791 (BO)IndonesiaFJ167627
C. cupreostipesJFK55 (CMU)ThailandFJ167640
C. cupreostipesJFK31 (CMU)ThailandFJ167641
C. deutziaeLi20220703-12 *ChinaOQ538295
C. deutziaeLi20220703-21ChinaOQ538296
C. dipterocarpiDED7602 (BO)ThailandFJ167651
C. dipterocarpiZT12031(BO)IndonesiaFJ167654
C. dipterocarpi f. cinnamomeaJFK17 (KLU-M)MalaysiaFJ167648
C. dipterocarpi f. cinnamomeaJFK32 (KLU-M)ThailandFJ167649
C. floccosaGDGM 50000ChinaKJ698641
C. floccosaGDGM 43024ChinaKJ698642
C. furcataJFK103 (BO)IndonesiaFJ167657
C. furcataDED6951 (BO)IndonesiaFJ167658
C. aff. iopusRW774 (GENT)Papua New GuineaFJ167636
C. aff. iopusRW829 (GENT)Papua New GuineaFJ167638
C. malesianaKUM084a (KLU-M)MalaysiaFJ167629
C. malesianaAR513 (BO)IndonesiaFJ167630
C. mezzanensisBRNM 766629ItalyKP347691
C. nigicaulisCBM-FB-24125JapanFJ766094
C. nigicaulisRA7210-6USAMN148653
C. nigicaulis var. macrosporaVA07.96 (BRNM712569)KoreaFJ573196
C. nigicaulis var. macrosporaKG231 (BRNM712580)KoreaFJ573197
C. nigrolamellataLIP 0201684FranceMT946363
C. nigrolamellataLIP 0201685FranceMT946364
C. odorataCAL:1240IndiaKT952521
C. pallidipilusVA 12.88 (BRNM751595)KoreaKF380833
C. piceaeDED7622 (SFSU)USAFJ167632
C. piceaeDED7758 (SFSU)USAFJ167633
C. podocarpiBandala 4333MexicoJF930647
C. proceraZT8490 (ZT)New ZealandFJ167660
C. rhizomaticolaVA 08.55 (BRNM712570)KoreaFJ573198
C. rhizomaticolaHe 7791ChinaOQ538297
C. scabellaPB302GermanyAY571033
C. scabellaZTBAM98 (ZT)FranceFJ167635
C. setipesJFK34 (CMU)ThailandFJ167634
C. setipesBandala 4031MexicoJF930641
C. tabtimJFK129 (CMU)ThailandFJ167643
C. tabtimJFK141 (CMU)ThailandFJ167644
C. tabtimLi160629-31ChinaOQ538294
C. trichialisZT6456 (ZT)IndonesiaFJ167615
C. trichialisJFK97 (SFSU)MalaysiaFJ167616
C. wandoensisVA 12.90 (BRNM751594)KoreaKF380832
C. zonataVPI3355USAAY916692
C. zonataDAOM176761 (SFSU)CanadaFJ167659
Chaetocalathus columelliferJFK72 (SFSU)MalaysiaFJ167665
Ch. craterellusSN223 (ZT)ItalyFJ167664
Ch. fragilisDED6359 (SFSU)HawaiiFJ167661
Ch. fragilisJFK122 (SFSU)ThailandFJ167662
Ch. galeatusJFK67 (SFSU)ThailandFJ167663
Ch. liliputianusMCA485 (BPI)Puerto RicoAY916682
Ch. magnusDED4763(SFSU)ColombiaFJ167666
Moniliophthora aurantiacaUTC 253824SamoaJN692482
Mo. canescensDED7518 (SFSU)MalaysiaFJ167668
Mo. conchata var. brevisporaVA 12.91 (BRNM751596)KoreaKF380834
Mo. perniciosaCM49BrazilAY753996
Mo. perniciosaMCA2520 (BPI)EcuadorAY916743
Mo. roreriMCA2521 (BPI)EcuadorAY194150
Mo. roreriC21 (CATIE)Costa RicaAY916746
Mo. roreri var. gileriDIS331EcuadorAY230255
Marasmius acerosusTYS458MalaysiaFJ431213
M. acerosusTYS427MalaysiaFJ431214
M. adhaesusTYS467MalaysiaFJ431216
M. adhaesusTYS464MalaysiaFJ431217
M. albimyceliosusKP-13PakistanHF546218
M. albisubiculosusDED 8277PrincipeKX953752
M. albopurpureusGDGM 57201ChinaKP127674
M. albopurpureusGDGM 57089ChinaKP127675
M. albulusNW627ThailandMZ145122
M. alienigenusJO221BrazilMN714030
M. alienigenusJO147BrazilMN714029
M. altoribeirensisJO532BrazilKP635204
M. ambicellularisJO144BrazilKP635181
M. andasibensis var. obscurostipitatusBuyck 00.1699bMadagascarKX149005
M. apateliusNW427ThailandEU935561
M. apateliusJES 203MadagascarKX148998
M. araneocephalusNW358ThailandEU935540
M. araucariae var. siccipesNW364ThailandEU935511
M. atrorubensJO489BrazilKP635206
M. atrorubensJO528BrazilKP635207
M. auranticapitatusMC4554BrazilON502670
M. auranticapitatusJO300BrazilON502677
M. aurantioferrugineusKG 254KoreaFJ904962
M. aurantioferrugineusHCCN 3571KoreaFJ904964
M. auratusNW076ThailandEU935501
M. auratusNW175ThailandEU935502
M. avellaneusJO244BrazilMN714032
M. avellaneusJO229BrazilMN714033
M. bambusiniformisNW329ThailandEU935521
M. bambusiniformisNW368ThailandEU935522
M. bekolacongoliLockwood 2131638MadagascarKX148982
M. bellusJO299BrazilKP635208
M. benghalensisSOUMITRA 240IndiaMF189044
M. benghalensisSOUMITRA 205IndiaMF189043
M. bondoiNW320ThailandEU935474
M. bondoiNW386ThailandEU935476
M. brevicollusNW128ThailandEU935558
M. brunneoaurantiacusJES 115MadagascarKX149011
M. brunneoaurantiacusJES 113MadagascarKX149009
M. brunneolorobustusBRI:AQ1018016AustraliaOK044757
M. brunneolorobustusBRI:AQ1017490AustraliaOK044752
M. brunneoolivascensNW112ThailandEU935516
M. brunneoolivascensNW373ThailandEU935517
M. brunneospermusBRNM 714569KoreaFJ904967
M. brunneospermusKG 237KoreaFJ904968
M. bulliardiiNN048356DenmarkJN943600
M. bulliardiiBRNM 705006HungaryJN540056
M. cafeyenNW130 US 34ThailandEU935547
M. calvocystidiatusINPA259374BrazilKU170116
M. calvocystidiatusINPA259372BrazilKU170115
M. calvusNW331ThailandEU935481
M. campestrisHKAS 80857ChinaKJ126766
M. campestrisHKAS 80858ChinaKJ126767
M. capillarisTENN61532USAFJ596826
M. castanocephalusJO523BrazilON502679
M. chrysoblepharioidesSI-15-24ArgentinaMF683956
M. chrysoblepharioidesSI-5-12ArgentinaMF683957
M. cladophyllus var. glaberripesJO87BrazilKP635163
M. cladophyllus var. glaberripesJO518BrazilKP635164
M. coarctatusNW315ThailandEU935541
M. coarctatusNW385ThailandEU935542
M. coasiaticusJO323BrazilON502680
M. coasiaticusJO339BrazilON502681
M. cohaerensBRNM 695761KoreaGU266260
M. cohaerensBRNM 652833KoreaGU266261
M. cohaerens var. lachnophyllusDED 4071USAFJ431230
M. cohaerens var. mandshuricusLE295987RussiaKF774170
M. cohaerens var. mandshuricusLE295986RussiaKF774171
M. coklatusTYS301ThailandEU935543
M. colorimarginatusDED 8309MadagascarKX953745
M. conchiformisJO117BrazilJX424038
M. conchiformisJO45BrazilKF741996
M. congregatusJO122BrazilKP635165
M. congregatusJO468BrazilKP635168
M. corneriNW269ThailandEU935482
M. corrugatiformisDED 8233Sao TomeKX953757
M. corrugatiformisDED 8326Sao TomeKX953756
M. corrugatusJO336BrazilKP635170
M. corrugatusJO456BrazilKP635171
M. cremeusNW366ThailandEU935494
M. crinipesBRNM 714682KoreaFJ917627
M. crinipesBRNM 714694KoreaFJ917629
M. crinisequiNW348ThailandEU935555
M. aff. crinisequiNW205ThailandEU935565
M. aff. crinisequiNW182ThailandEU935564
M. cupreostipesNW150ThailandEU935485
M. curreyiDED 5142USAFJ431237
M. aff. curreyiJES 135MadagascarKX149008
M. aff. curreyiBuyck 97.374MadagascarKX148980
M. cystidiatus1672IndiaMH216042
M. cystidiatusCAL 1669IndiaMH216191
M. delectansS.D. Russell MycoMap 7736USAMK532846
M. dendrosetosusJES 205MadagascarKX148995
M. dendrosetosusJES 211MadagascarKX148996
M. dimorphusJO298BrazilKP635174
M. dimorphusJO334BrazilKP635175
M. distantifoliusTYS478MalaysiaFJ431239
M. diversusDED 8263PrincipeKX953751
M. edwallianusJO15BrazilMN714022
M. elaeocephaliformisDED 8213Sao TomeKX953758
M. elaeocephalusDED 8254Sao TomeKX953754
M. ferruginoidesJES 209MadagascarKX148983
M. fusicystidiosusBRNM 714567KoreaFJ917624
M. galbinusGDGM 27251ChinaHQ709445
M. ganyaoNW005ThailandEU935499
M. gardneriJO491BrazilON502683
M. gardneriJO454BrazilON502684
M. gracilisJO90BrazilMN714038
M. graminicolaBRNM 714701KoreaFJ917621
M. graminicolaBRNM 714685KoreaFJ917617
M. graminipesNW078ThailandEU935479
M. graminumNN005953DenmarkJN943595
M. grandisetulosusDED 8225Sao TomeKX953743
M. grandisetulosusDED 8257Sao TomeKX953744
M. grandiviridisNW152ThailandEU643514
M. grandiviridisNW349ThailandEU643515
M. griseoroseusJO465BrazilKJ173479
M. griseoroseus var. diminutusJO390BrazilJX424044
M. guyanensisTYS314ThailandEU935554
M. guyanensisNW280ThailandEU935553
M. haediniformisDED 8216Sao TomeKX953759
M. haediniformisDED 8217Sao TomeKX953760
M. haematocephalusNW409ThailandEU935527
M. haematocephalusNW296ThailandEU935526
M. hinnuleusJES 217MadagascarKX148988
M. hippiochaetesJO423BrazilMN714025
M. hippiochaetesJO418BrazilMN714024
M. horridulusINPA270735BrazilKU170118
M. hypochroidesNW405ThailandEU935545
M. hypophaeusNW285ThailandEU935484
M. imitariusCAL 1520IndiaMF189058
M. imitariusNW297ThailandEU935496
M. indojasminodorusAKD 135/2015IndiaKY785172
M. insolitusLE 289497RussiaKF774162
M. insolitusLE 289498RussiaKF774163
M. inthanonensisNW353ThailandEU935514
M. cf. iodactylusJO241BrazilMN714026
M. cf. iodactylusJO110BrazilMN714027
M. irasNW276ThailandEU935486
M. jalapensis414FParaguayMT441867
M. jasminodorusNW294ThailandEU935513
M. jasminodorusNW414ThailandEU935515
M. jinfoshanensisDCY 2409ChinaMT556448
M. jinfoshanensisDCY 2413ChinaMT556449
M. katangensisJES 227MadagascarKX148991
M. koreanusBRNM 714697KoreaFJ917619
M. koreanusBRNM 714700KoreaFJ917620
M. laranjaDED 8231Sao TomeKX953748
M. laticlavatusNW293ThailandEU643512
M. laticlavatusNW412ThailandEU643511
M. leoninusJO320BrazilKP635162
M. leoninusJO84BrazilKP635209
M. leucorotalisJO498BrazilMN714039
M. leucorotalisJO448BrazilMN714040
M. leveilleanusNW248ThailandEU935566
M. leveilleanusNW268ThailandEU935567
M. linderioidesJO286BrazilJX424037
M. longibasidiatusJO444BrazilMN714050
M. longisetosusJO248BrazilJX424040
M. luculentusCUH AM120IndiaKX138604
M. luteolusNW138ThailandEU935506
M. luteolusNW304ThailandEU935507
M. macrocystidiosusLE 295996RussiaKF774136
M. madagascariensisJES 225MadagascarKX149006
M. madagascariensisJES 139MadagascarKX149015
M. magnusICN 179252BrazilKX228848
M. magnusFLOR 55963BrazilKX228846
M. makokNW201ThailandEU935524
M. margallensisSIM35PakistanOP804130
M. margallensisSIM34PakistanOP804131
M. maximusBRNM 714570KoreaFJ904976
M. maximusBRNM 714571KoreaFJ904977
M. megistusJES 163MadagascarKX148992
M. megistusLockwood 2132155MadagascarKX148993
M. aff. megistusDED 8230Sao TomeKX953750
M. mokfaensisDED 7726ThailandEU643516
M. mokfaensisNW020ThailandEU643517
M. musicolorTYS417MalaysiaFJ431262
M. neosessilisSP 417480BrazilJX424041
M. neotrichotusCTES0568167ArgentinaMF683958
M. neotropicalisJO325BrazilKP635185
M. neotropicalisJO69BrazilKP635183
M. nigrobrunneusNW260ThailandEU935574
M. nigrobrunneusNW120ThailandEU935578
M. nigrodiscusHalling 9236USAKF774137
M. nigrodiscusTENN 49976USAKF774138
M. nivicolaBRNM 714575KoreaFJ904972
M. nivicolaBRNM 714572KoreaFJ904970
M. nodulocystisDED 8278PrincipeKX953741
M. nodulocystisDED 8283PrincipeKX953742
M. nummulariusNW266ThailandEU935492
M. nummulariusNW396ThailandEU935493
M. obscuroaurantiacusNW1079ThailandMZ145165
M. occultatiformisVLA M-19639RussiaKF774160
M. occultatiformisLE 295995RussiaKF774157
M. occultatusBRNM 714699KoreaFJ917622
M. ochroleucusLE 295978RussiaKF912952
M. odoratusCAL 1264IndiaKT180332
M. oreadesNN055694DenmarkJN943604
M. oreadesZRL2015086ChinaLT716048
M. orientalisBRNM 714913KoreaGU266262
M. olivascensTYS424MalaysiaFJ431266
M. olivascensTYS426MalaysiaFJ431265
M. aff. pallescensNW424ThailandEU935500
M. pallidibrunneusMC 4706BrazilKP635186
M. pallidoaurantiacusBKF 10248ThailandMZ452673
M. pallidocinctus var. latisporusJO164BrazilMN714053
M. pallidocinctus var. latisporusJO51BrazilMN714054
M. paratrichotusDED 8248Sao TomeKX953749
M. pellucidusNW321ThailandEU935508
M. pellucidusNW342ThailandEU935509
M. pinicolaLi20220706-13ChinaOQ941785
M. pinicolaLi20220706-15 *ChinaOQ941786
M. plicatulusNW439ThailandEU935480
M. pseudoniveoaffinisJO60BrazilKP635187
M. pseudoniveoaffinisJO70BrazilKP635188
M. pseudopellucidusNW186ThailandEU935504
M. pseudopellucidusNW305ThailandEU935505
M. pseudopurpureostriatusNW286ThailandEU643513
M. puerariaeR. Kirschner & C.-J. Chen 2139ChinaJX470333
M. pulcherripesRA705-12bUSAMK217466
M. pulcherripesiNAT:30809942USAMZ267775
M. purpureisetosusNW155ThailandEU935563
M. purpureobrunneolusNW370ThailandEU935557
M. purpureobrunneolusNW215ThailandEU935556
M. purpureostriatusBRNM 714566KoreaFJ904978
M. puttemansiiJO249BrazilMN714046
M. puttemansiiJO120BrazilMN714047
M. rhabarbarinusJO457BrazilKP635191
M. rhabarbarinusJO474BrazilKP642113
M. rhodopurpureusBRNM 724483KoreaHQ607382
M. rongklaensisNW555ThailandKJ588401
M. rongklaensisNW767ThailandEU935560
M. roseusJO352BrazilON502678
M. rotalisJES 145MadagascarKX149000
M. rotalisJES 141MadagascarKX148999
M. rotulaID PAN 279PolandKM085384
M. rotulaPBM 2563USADQ182506
M. rotulaNN005958DenmarkJN943598
M. ruberDED 8669BrazilKP635193
M. rubicundusJO464BrazilON502658
M. rubrobrunneusJES 191MadagascarKX148989
M. ruforotulaBRNM 714676KoreaFJ936152
M. ruforotulaBRNM 714674KoreaFJ936150
M. sanguirotalisJO358BrazilMN714060
M. siccusBRNM 552709KoreaHQ607384
M. siccusLE 295980RussiaKF774130
M. siccusDED 5255USAFJ431272
M. silvicolaJO362BrazilKP635195
M. silvicolaJO366BrazilKP635196
M. somalomoensisJES 181MadagascarKX149004
M. somalomoensisJES 165MadagascarKX149003
M. sokolaJES 154MadagascarKX148994
M. spegazziniiJO467BrazilKP635197
M. straminicepsNW256ThailandEU935549
M. strobiluriformisBRNM 714914KoreaGU266263
M. strobiluriformisBRNM 714915KoreaGU266264
M. subarborescensDED 8215Sao TomeKX953755
M. subputtemansiiJO363BrazilMN714043
M. subputtemansiiJO54BrazilMN714044
M. subruforotulaNW140ThailandEU935579
M. cf. subruforotulaJES 186MadagascarKX149017
M. cf. subruforotulaJES 190MadagascarKX149019
M. subtangerinusBRNM 718756KoreaHQ607380
M. subtropicusJIT14/2015IndiaMF189061
M. subtropicusAKD 51/2016IndiaMF189062
M. subvigintifoliusJO242BrazilMN714035
M. subvigintifoliusJO220BrazilMN714034
M. sullivantiiMO218479USAMK607492
M. suthepensisJO329BrazilKP635198
M. suthepensisJO469BrazilKP635199
M. tageticolorJBSD130776Dominican RepublicMT260146
M. tageticolorJBSD130775Dominican RepublicMT260147
M. tangerinusBKF 10249ThailandMZ452087
M. tantulusNW239ThailandEU935560
M. tenuissimusNW192ThailandEU935568
M. tenuissimusNW199ThailandEU935569
M. torquescensLE 234906RussiaKF774164
M. torquescensLE 247164RussiaKF774165
M. trichorhizusJO530BrazilMN714051
M. trichotusNW262ThailandEU935490
M. trichotusNW263ThailandEU935491
M. tricystidiatusNR 100ArgentinaMT441866
M. tricystidiatusCB T6-02ArgentinaMF683959
M. trinitatisJO306BrazilKP635200
M. tubulatusBRNM 714675KoreaFJ936151
M. tucumanusJBSD130778Dominican RepublicMT260145
M. venatifoliusJO63BrazilKP635201
M. venatifoliusJO313BrazilKP635203
M. vigintifoliusJO112BrazilMN714036
M. vigintifoliusJO44BrazilMN714037
M. wisteriaeBRNM 724478KoreaJN003838
M. wisteriaeBRNM 718761KoreaJN003839
M. wynneaeHCCN G86KoreaFJ904979
M. xestocephalusJFK69ThailandEU935488
M. xestocephalusNW344ThailandEU935489
M. ypyrangensisJO472BrazilMN714064
M. ypyrangensisJO374BrazilMN714063
M. yunnanensisDai 19857ChinaMW969679
M. yunnanensisDai 19782ChinaMW969678
Marasmius sp. 1Tu-BL11JapanLC505316
Marasmius sp. 2JO499BrazilMN714059
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Y.; He, S.-H.; Zhang, Y.-Z.; Liang, J.-Q.; Sheng, W.-Y.; Si, J.; Li, H.-J. Crinipellis deutziae, Marasmius pinicola spp. nov., and C. rhizomaticola (Agaricales, Basidiomycota) New to China from Beijing. Forests 2023, 14, 1480. https://doi.org/10.3390/f14071480

AMA Style

Li Y, He S-H, Zhang Y-Z, Liang J-Q, Sheng W-Y, Si J, Li H-J. Crinipellis deutziae, Marasmius pinicola spp. nov., and C. rhizomaticola (Agaricales, Basidiomycota) New to China from Beijing. Forests. 2023; 14(7):1480. https://doi.org/10.3390/f14071480

Chicago/Turabian Style

Li, Yue, Shuang-Hui He, Yi-Zhe Zhang, Jia-Qi Liang, Wen-Yue Sheng, Jing Si, and Hai-Jiao Li. 2023. "Crinipellis deutziae, Marasmius pinicola spp. nov., and C. rhizomaticola (Agaricales, Basidiomycota) New to China from Beijing" Forests 14, no. 7: 1480. https://doi.org/10.3390/f14071480

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop