Next Issue
Volume 28, January-1
Previous Issue
Volume 27, December-1
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 27, Issue 24 (December-2 2022) – 431 articles

Cover Story (view full-size image): Considering the potential of metal-doped TiO2 and micro-flow reactors as a powerful tool for catalyst testing, bimetallic catalysts in a flow microreactor for photocatalytic oxidation of lignin-based model compound is an exciting field of research. Current work introduces an ultrasound-assisted wall-coated microreactor and batch system to study the photocatalytic activity of synthesized bimetallic TiO2 under UV and visible light for the oxidation of benzyl alcohol, vanillin alcohol, cinnamyl alcohol, and coniferyl alcohol. The bimetallic catalyst exhibited improved photocatalytic selective oxidation. Additionally, the complex formation between TiO2 and other aromatic alcohols (containing OCH3 and OH groups) activated the sol-gel synthesized catalyst under visible light. This study will serve as a conceptual blueprint for further developments. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2640 KiB  
Article
Two-Step Synthesis, Structure, and Optical Features of a Double Hetero[7]helicene
by Mohamed S. H. Salem, Ahmed Sabri, Md. Imrul Khalid, Hiroaki Sasai and Shinobu Takizawa
Molecules 2022, 27(24), 9068; https://doi.org/10.3390/molecules27249068 - 19 Dec 2022
Cited by 4 | Viewed by 3124
Abstract
A novel double aza-oxa[7]helicene was synthesized from the commercially available N1,N4-di(naphthalen-2-yl)benzene-1,4-diamine and p-benzoquinone in two steps. Combining the acid-mediated annulation with the electrochemical sequential reaction (oxidative coupling and dehydrative cyclization) afforded this double hetero[7]helicene. Moreover, the structural [...] Read more.
A novel double aza-oxa[7]helicene was synthesized from the commercially available N1,N4-di(naphthalen-2-yl)benzene-1,4-diamine and p-benzoquinone in two steps. Combining the acid-mediated annulation with the electrochemical sequential reaction (oxidative coupling and dehydrative cyclization) afforded this double hetero[7]helicene. Moreover, the structural and optical features of this molecule have been studied using X-ray crystallographic analysis, and the absorption and emission behaviors were rationalized based on DFT calculations. Full article
(This article belongs to the Special Issue New Approaches to Synthetic Organic Chemistry)
Show Figures

Figure 1

10 pages, 305 KiB  
Review
Essential Oils against Sarcoptes scabiei
by Simona Nardoni and Francesca Mancianti
Molecules 2022, 27(24), 9067; https://doi.org/10.3390/molecules27249067 - 19 Dec 2022
Cited by 2 | Viewed by 4630
Abstract
Herbal remedia are widely employed in folk medicine, and have been more and more often studied and considered in the treatment of several infections. Sarcoptic mange (scabies, when referring to human patients) is a highly contagious skin disease caused by Sarcoptes scabiei (sarcoptiformes, [...] Read more.
Herbal remedia are widely employed in folk medicine, and have been more and more often studied and considered in the treatment of several infections. Sarcoptic mange (scabies, when referring to human patients) is a highly contagious skin disease caused by Sarcoptes scabiei (sarcoptiformes, Sarcoptinae), an astigmatid mite which burrows into the epidermis, actively penetrating the stratum corneum. This parasitosis negatively affects livestock productions and represents a constraint on animal and human health. The treatment relies on permethrine and ivermectine but, since these molecules do not have ovicidal action, more than a single dose should be administered. Toxicity, the possible onset of parasite resistance, the presence of residues in meat and other animal products and environmental contamination are the major constraints. These shortcomings could be reduced by the use of plant extracts that have been in vitro or in vivo checked against these mites, sometimes with promising results. The aim of the present study was to review the literature dealing with the treatment of both scabies and sarcoptic mange by plant-derived agents, notably essential oils. Full article
(This article belongs to the Special Issue Biological Activity of Essential Oils)
17 pages, 2654 KiB  
Article
Molecular Networking and Cultivation Profiling Reveals Diverse Natural Product Classes from an Australian Soil-Derived Fungus Aspergillus sp. CMB-MRF324
by Taizong Wu, Angela A. Salim, Paul V. Bernhardt and Robert J. Capon
Molecules 2022, 27(24), 9066; https://doi.org/10.3390/molecules27249066 - 19 Dec 2022
Cited by 1 | Viewed by 1510
Abstract
This study showcases the application of an integrated workflow of molecular networking chemical profiling (GNPS), together with miniaturized microbioreactor cultivation profiling (MATRIX) to successfully detect, dereplicate, prioritize, optimize the production, isolate, characterize, and identify a diverse selection of new chemically labile natural products [...] Read more.
This study showcases the application of an integrated workflow of molecular networking chemical profiling (GNPS), together with miniaturized microbioreactor cultivation profiling (MATRIX) to successfully detect, dereplicate, prioritize, optimize the production, isolate, characterize, and identify a diverse selection of new chemically labile natural products from the Queensland sheep pasture soil-derived fungus Aspergillus sp. CMB-MRF324. More specifically, we report the new tryptamine enamino tripeptide aspergillamides E–F (78), dihydroquinoline-2-one aflaquinolones H–I (1112), and prenylated phenylbutyrolactone aspulvinone Y (14), along with an array of known co-metabolites, including asterriquinones SU5228 (9) and CT5 (10), terrecyclic acid A (13), and aspulvinones N-CR (15), B (16), D (17), and H (18). Structure elucidation was achieved by a combination of detailed spectroscopic and chemical analysis, biosynthetic considerations, and in the case of 11, an X-ray crystallographic analysis. Full article
(This article belongs to the Special Issue Microbial Natural Products 2022)
Show Figures

Figure 1

15 pages, 2543 KiB  
Article
In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments
by Hammad Ullah, Alessandro Di Minno, Cristina Santarcangelo, Ariyawan Tantipongpiradet, Marco Dacrema, Rita di Matteo, Hesham R. El-Seedi, Shaden A. M. Khalifa, Alessandra Baldi, Antonietta Rossi and Maria Daglia
Molecules 2022, 27(24), 9065; https://doi.org/10.3390/molecules27249065 - 19 Dec 2022
Cited by 3 | Viewed by 1765
Abstract
Allium cepa L. is a highly consumed garden crop rich in biologically active phenolic and organosulfur compounds. This study aimed to assess the in vitro bioaccessibility and anti-inflammatory effect of a chemically characterized A. cepa extract rich in quercetin and its derivatives. Different [...] Read more.
Allium cepa L. is a highly consumed garden crop rich in biologically active phenolic and organosulfur compounds. This study aimed to assess the in vitro bioaccessibility and anti-inflammatory effect of a chemically characterized A. cepa extract rich in quercetin and its derivatives. Different varieties of A. cepa were studied; based on the highest total phenolic content, the “Golden” variety was selected. Its extracts, obtained from the tunicate bulb, tunic, and bulb, were subjected to determination of quercetin and its derivatives with LC-MS analysis and based on the highest total quercetin content, the tunic extract was utilized for further experiments. The extraction method was optimized through a design of experiment (DoE) method via full factorial design, which showed that 40% ethanol and 1 g tunic/20 mL solvent are the best extraction conditions. HPLC analysis of the optimized tunic extract identified 14 flavonols, including 10 quercetin derivatives. As far as in vitro bioaccessibility was concerned, the increases in some quercetin derivatives following the gastro-duodenal digestion process support the bioaccessibility of these bioactive compounds. Moreover, the extract significantly inhibited the production of PGE2 in stimulated J774 cell lines, while no effects of the tunic extract were observed against the release of IL-1β, TNF-α, and nitrites. The study provided insights into the optimized extraction conditions to obtain an A. cepa tunic extract rich in bioavailable quercetin derivatives with significant anti-inflammatory effects against PGE2. Full article
Show Figures

Figure 1

16 pages, 8684 KiB  
Review
Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment
by Gregor Primc, Rok Zaplotnik, Alenka Vesel and Miran Mozetič
Molecules 2022, 27(24), 9064; https://doi.org/10.3390/molecules27249064 - 19 Dec 2022
Cited by 2 | Viewed by 1264
Abstract
Plasma methods are often employed for the desired wettability and soaking properties of polymeric textiles, but the exact mechanisms involved in plasma–textile interactions are yet to be discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates mechanisms that lead [...] Read more.
Plasma methods are often employed for the desired wettability and soaking properties of polymeric textiles, but the exact mechanisms involved in plasma–textile interactions are yet to be discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates mechanisms that lead to the appropriate surface finish of fibers inside the textile. The crucial relations are provided, and the different concepts of low-pressure and atmospheric-pressure discharges useful for the modification of textile’s properties are explained. The atmospheric-pressure plasma sustained in the form of numerous stochastical streamers will penetrate textiles of reasonable porosity, so the reactive species useful for the functionalization of fibers deep inside the textile will be created inside the textile. Low-pressure plasmas sustained at reasonable discharge power will not penetrate into the textile, so the depth of the modified textile is limited by the diffusion of reactive species. Since the charged particles neutralize on the textile surface, the neutral species will functionalize the fibers deep inside the textile when low-pressure plasma is chosen for the treatment of textiles. Full article
(This article belongs to the Special Issue Advances in Textile Materials Chemistry)
Show Figures

Figure 1

19 pages, 1361 KiB  
Review
Coumarin-Induced Hepatotoxicity: A Narrative Review
by Michele Pitaro, Nicoletta Croce, Valentina Gallo, Alyexandra Arienzo, Giulia Salvatore and Giovanni Antonini
Molecules 2022, 27(24), 9063; https://doi.org/10.3390/molecules27249063 - 19 Dec 2022
Cited by 11 | Viewed by 2542
Abstract
Coumarin is an effective treatment for primary lymphoedema, as well as lymphoedema related to breast cancer radiotherapy or surgery. However, its clinical use is limited in several countries due to the possible occurrence of hepatotoxicity, mainly in the form of mild to moderate [...] Read more.
Coumarin is an effective treatment for primary lymphoedema, as well as lymphoedema related to breast cancer radiotherapy or surgery. However, its clinical use is limited in several countries due to the possible occurrence of hepatotoxicity, mainly in the form of mild to moderate transaminase elevation. It is worth noting that only a few cases of severe hepatotoxicity have been described in the literature, with no reported cases of liver failure. Data available on coumarin absorption, distribution, metabolism, and excretion have been reviewed, focusing on hepatotoxicity studies carried out in vitro and in vivo. Finally, safety and tolerability data from clinical trials have been thoroughly discussed. Based on these data, coumarin-induced hepatotoxicity is restricted to a small subset of patients, probably due to the activation in these individuals of alternative metabolic pathways involving specific CYP450s isoforms. The aim of this work is to stimulate research to clearly identify patients at risk of developing hepatotoxicity following coumarin treatment. Early identification of this subset of patients could open the possibility of more safely exploiting the therapeutical properties of coumarin, allowing patients suffering from lymphoedema to benefit from the anti-oedematous activity of the treatment. Full article
Show Figures

Figure 1

18 pages, 1429 KiB  
Article
Synthesis, Characterization and Biological Evaluation of Benzothiazole–Isoquinoline Derivative
by Weihua Liu, Donghai Zhao, Zhiwen He, Yiming Hu, Yuxia Zhu, Lingjian Zhang, Lianhai Jin, Liping Guan and Sihong Wang
Molecules 2022, 27(24), 9062; https://doi.org/10.3390/molecules27249062 - 19 Dec 2022
Cited by 2 | Viewed by 1715
Abstract
Currently, no suitable clinical drugs are available for patients with neurodegenerative diseases complicated by depression. Based on a fusion technique to create effective multi–target–directed ligands (MTDLs), we synthesized a series of (R)–N–(benzo[d]thiazol–2–yl)–2–(1–phenyl–3,4–dihydroisoquinolin–2(1H)–yl) acetamides with substituted benzothiazoles and [...] Read more.
Currently, no suitable clinical drugs are available for patients with neurodegenerative diseases complicated by depression. Based on a fusion technique to create effective multi–target–directed ligands (MTDLs), we synthesized a series of (R)–N–(benzo[d]thiazol–2–yl)–2–(1–phenyl–3,4–dihydroisoquinolin–2(1H)–yl) acetamides with substituted benzothiazoles and (S)–1–phenyl–1,2,3,4–tetrahydroisoquinoline. All compounds were tested for their inhibitory potency against monoamine oxidase (MAO) and cholinesterase (ChE) by in vitro enzyme activity assays, and further tested for their specific inhibitory potency against monoamine oxidase B (MAO–B) and butyrylcholinesterase (BuChE). Among them, six compounds (4b4d, 4f, 4g and 4i) displayed excellent activity. The classical antidepressant forced swim test (FST) was used to verify the in vitro results, revealing that six compounds reduced the immobility time significantly, especially compound 4g. The cytotoxicity of the compounds was assessed by the MTT method and Acridine Orange (AO) staining, with cell viability found to be above 90% at effective compound concentrations, and not toxic to L929 cells reversibility, kinetics and molecular docking studies were also performed using compound 4g, which showed the highest MAO–B and BuChE inhibitory activities. The results of these studies showed that compound 4g binds to the primary interaction sites of both enzymes and has good blood–brain barrier (BBB) penetration. This study provides new strategies for future research on neurodegenerative diseases complicated by depression. Full article
Show Figures

Figure 1

13 pages, 4512 KiB  
Article
Screening of the Active Compounds against Neural Oxidative Damage from Ginseng Phloem Using UPLC-Q-Exactive-MS/MS Coupled with the Content-Effect Weighted Method
by Xiao-Chen Gao, Nan-Xi Zhang, Jia-Ming Shen, Jing-Wei Lv, Kai-Yue Zhang, Yao Sun, Hang Li, Yue-Long Wang, Duan-Duan Cheng, Meng-Ya Zhao, Hui Zhang, Chun-Nan Li and Jia-Ming Sun
Molecules 2022, 27(24), 9061; https://doi.org/10.3390/molecules27249061 - 19 Dec 2022
Cited by 1 | Viewed by 1308
Abstract
The neuroprotective properties of ginsenosides have been found to reverse the neurological damage caused by oxidation in many neurodegenerative diseases. However, the distribution of ginsenosides in different tissues of the main root, which was regarded as the primary medicinal portion in clinical practice [...] Read more.
The neuroprotective properties of ginsenosides have been found to reverse the neurological damage caused by oxidation in many neurodegenerative diseases. However, the distribution of ginsenosides in different tissues of the main root, which was regarded as the primary medicinal portion in clinical practice was different, the specific parts and specific components against neural oxidative damage were not clear. The present study aims to screen and determine the potential compounds in different parts of the main root in ginseng. Comparison of the protective effects in the main root, phloem and xylem of ginseng on hydrogen peroxide-induced cell death of SH-SY5Y neurons was investigated. UPLC-Q-Exactive-MS/MS was used to quickly and comprehensively characterize the chemical compositions of the active parts. Network pharmacology combined with a molecular docking approach was employed to virtually screen for disease-related targets and potential active compounds. By comparing the changes before and after Content-Effect weighting, the compounds with stronger anti-nerve oxidative damage activity were screened out more accurately. Finally, the activity of the selected monomer components was verified. The results suggested that the phloem of ginseng was the most effective part. There were 19 effective compounds and 14 core targets, and enriched signaling pathway and biological functions were predicted. After Content-Effect weighting, compounds Ginsenosides F1, Ginsenosides Rf, Ginsenosides Rg1 and Ginsenosides Rd were screened out as potential active compounds against neural oxidative damage. The activity verification study indicated that all four predicted ginsenosides were effective in protecting SH-SY5Y cells from oxidative injury. The four compounds can be further investigated as potential lead compounds for neurodegenerative diseases. This also provides a combined virtual and practical method for the simple and rapid screening of active ingredients in natural products. Full article
Show Figures

Figure 1

10 pages, 3532 KiB  
Article
Ratiometric Singlet Oxygen Sensor Based on BODIPY-DPA Dyad
by Alexey A. Pakhomov, Anastasia S. Belova, Arevik G. Khchoyan, Yuriy N. Kononevich, Dmitriy S. Ionov, Margarita A. Maksimova, Anastasiya Yu. Frolova, Mikhail V. Alfimov, Vladimir I. Martynov and Aziz M. Muzafarov
Molecules 2022, 27(24), 9060; https://doi.org/10.3390/molecules27249060 - 19 Dec 2022
Cited by 1 | Viewed by 2005
Abstract
Compounds sensitive to reactive oxygen species are widely used in the study of processes in living cells and in the development of therapeutic agents for photodynamic therapy. In the present work, we have synthesized a dyad in which the BODIPY dye is chemically [...] Read more.
Compounds sensitive to reactive oxygen species are widely used in the study of processes in living cells and in the development of therapeutic agents for photodynamic therapy. In the present work, we have synthesized a dyad in which the BODIPY dye is chemically bound to 9,10-diphenylanthracene (DPA). Here, DPA acts as a specific sensor of singlet oxygen and BODIPY as a reference dye. We studied the photophysical properties of the BODIPY-DPA dyad and showed that energy transfer occurs between the chromophores. As a result, the compound has excitation maxima in the absorption region of both DPA and BODIPY, but the fluorescence emission occurs mainly from BODIPY. In the presence of singlet oxygen, the excitation maximum of DPA decreases, while the intensity of the excitation maximum of BODIPY remains almost unchanged. This allows the BODIPY-DPA dyad to be used as a ratiometric sensor of singlet oxygen. Full article
(This article belongs to the Special Issue Advances in Fluorescent Probe Technology)
Show Figures

Figure 1

12 pages, 3985 KiB  
Article
Enhanced Ultrafast Broadband Reverse Saturable Absorption in Twistacenes with Enlarged π-Conjugated Central Bridge
by Xindi Liu, Wenfa Zhou, Mengyi Wang, Xingzhi Wu, Jidong Jia, Jinchong Xiao, Junyi Yang and Yinglin Song
Molecules 2022, 27(24), 9059; https://doi.org/10.3390/molecules27249059 - 19 Dec 2022
Cited by 1 | Viewed by 1348
Abstract
Optical nonlinearities of two all-carbon twistacenes, DPyA and DPyN, with the different π-conjugated central bridges were investigated. The nonlinear absorption properties of these compounds were measured using the femtosecond Z-scan with wavelengths between 650 and 900 nm. It has been found that [...] Read more.
Optical nonlinearities of two all-carbon twistacenes, DPyA and DPyN, with the different π-conjugated central bridges were investigated. The nonlinear absorption properties of these compounds were measured using the femtosecond Z-scan with wavelengths between 650 and 900 nm. It has been found that the nonlinear absorption originated from two-photon absorption (TPA) and TPA-induced excited state absorption (ESA), wherein DPyA demonstrates higher performance than DPyN. The TPA cross section of DPyA (4300 GM) is nearly 4.3 times larger than that of DPyN at 650 nm. Moreover, the different central structures modulate the intensity of ESA at 532 nm, and DPyA exhibits an excellent ESA at 532 nm with multi-pulse excitation. Meanwhile, the result of data fitting and quantum chemistry calculation shows that the enhancement of nonlinear absorption in DPyA is due to the extended π- conjugated bridge and improved delocalization of π-electrons. These all-carbon twistacenes could yield potential applications in optical power limiting (OPL) technology. Full article
(This article belongs to the Topic Recent Advances in Nonlinear Optics and Nonlinear Optical Materials)
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

18 pages, 2097 KiB  
Article
Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods
by Stamatia Christaki, Elisavet Bouloumpasi, Eleni Lalidou, Paschalina Chatzopoulou and Maria Irakli
Molecules 2022, 27(24), 9058; https://doi.org/10.3390/molecules27249058 - 19 Dec 2022
Cited by 10 | Viewed by 2021
Abstract
By-products of essential oils (EOs) in the industry represent an exploitable material for natural and safe antioxidant production. One representative group of such by-products is distilled solid residues, whose composition is properly modulated by the distillation method applied for the recovery of EOs. [...] Read more.
By-products of essential oils (EOs) in the industry represent an exploitable material for natural and safe antioxidant production. One representative group of such by-products is distilled solid residues, whose composition is properly modulated by the distillation method applied for the recovery of EOs. Recently, in terms of Green Chemistry principles, conventional extraction and distillation processes are considered outdated and tend to be replaced by more environmentally friendly ones. In the present study, microwave-assisted hydro-distillation (MAHD) was employed as a novel and green method for the recovery of EOs from three aromatic plants (rosemary, Greek sage and spearmint). The method was compared to conventional ones, hydro-distillation (HD) and steam-distillation (SD), in terms of phytochemical composition of distilled solid residues, which was estimated by spectrophotometric and chromatographic methods. Total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity (ABTS, DPPH and FRAP) results highlighted the distilled solid residues as good sources of antioxidants. Moreover, higher antioxidant activity was achieved for MAHD extracts of solid residues in comparison to HD and SD extracts. A metabolomics approach was carried out on the methanolic extracts of solid residues obtained by different distillation methods using LC-MS analysis followed by multivariate data analysis. A total of 29 specialized metabolites were detected, and 26 of them were identified and quantified, presenting a similar phenolic profile among different treatments, whereas differences were observed among different species. Rosmarinic acid was the most abundant phenolic compound in all extracts, being higher in MAHD extracts. In rosemary and Greek sage extracts, carnosol and carnosic acid were quantified in significant amounts, while trimers and tetramers of caffeic acid (salvianolic acids isomers) were identified and quantified in spearmint extracts, being higher in MAHD extracts. The obtained results pointed out that MAHD extracts of distilled solid by-products could be a good source of bioactives with potential application in the food, pharmaceutical and cosmetic industries, contributing to the circular economy. Full article
Show Figures

Figure 1

13 pages, 1936 KiB  
Article
Pro-Inflammatory Interactions of Dolutegravir with Human Neutrophils in an In Vitro Study
by Annette J. Theron, Ronald Anderson, Morris Madzime, Theresa M. Rossouw, Helen C. Steel, Pieter W. A. Meyer, Moloko C. Cholo, Luyanda L. I. Kwofie, Charles Feldman and Gregory R. Tintinger
Molecules 2022, 27(24), 9057; https://doi.org/10.3390/molecules27249057 - 19 Dec 2022
Cited by 3 | Viewed by 1427
Abstract
There is increasing awareness of an association between the uptake of the HIV integrase inhibitor, dolutegravir, in first-line antiretroviral regimens with unusual weight gain and development of the metabolic syndrome, particularly in African women. Although seemingly unexplored, the development of systemic inflammation linked [...] Read more.
There is increasing awareness of an association between the uptake of the HIV integrase inhibitor, dolutegravir, in first-line antiretroviral regimens with unusual weight gain and development of the metabolic syndrome, particularly in African women. Although seemingly unexplored, the development of systemic inflammation linked to the putative pro-inflammatory activity of dolutegravir represents a plausible pathophysiological mechanism of this unusual weight gain. This possibility was explored in the current study undertaken to investigate the effects of dolutegravir (2.5–20 μg/mL) on several pro-inflammatory activities of neutrophils isolated from the blood of healthy, adult humans. These activities included the generation of reactive oxygen species (ROS), degranulation (elastase release) and alterations in the concentrations of cytosolic Ca2+ using chemiluminescence, spectrophotometric and fluorimetric procedures, respectively. Exposure of neutrophils to dolutegravir alone resulted in the abrupt, dose-related, and significant (p < 0.0039–p < 0.0022) generation of ROS that was attenuated by the inclusion of the Ca2+-chelating agent, EGTA, or inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI), phospholipase C (U733122), myeloperoxidase (sodium azide) and phosphoinositol-3-kinase (wortmannin). In addition, exposure to dolutegravir augmented the release of elastase by stimulus-activated neutrophils. These pro-inflammatory effects of dolutegravir on neutrophils were associated with significant, rapid, and sustained increases in the concentrations of cytosolic Ca2+ that appeared to originate from the extracellular compartment, seemingly consistent with an ionophore-like property of dolutegravir. These findings are preliminary and necessitate verification in the clinical setting of HIV infection. Nevertheless, given the complex link between inflammation and obesity, these pro-inflammatory interactions of dolutegravir with neutrophils may contribute to unexplained weight gain, possibly via the development of insulin resistance. Full article
Show Figures

Figure 1

12 pages, 5156 KiB  
Article
HS-GC-IMS and PCA to Characterize the Volatile Flavor Compounds in Three Sweet Cherry Cultivars and Their Wines in China
by Baoxiang Liu, Yang Yang, Likun Ren, Zhengbo Su, Xin Bian, Jing Fan, Yuanyuan Wang, Bing Han and Na Zhang
Molecules 2022, 27(24), 9056; https://doi.org/10.3390/molecules27249056 - 19 Dec 2022
Cited by 2 | Viewed by 1756
Abstract
The aim of this research was to characterize differences and sources of volatile flavor compounds by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and principal component analysis (PCA). Three sweet cherry fruits from different cultivars (cv. Tie, Van, and Lap) and their wines that [...] Read more.
The aim of this research was to characterize differences and sources of volatile flavor compounds by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and principal component analysis (PCA). Three sweet cherry fruits from different cultivars (cv. Tie, Van, and Lap) and their wines that were produced by the same yeast were detected. The results showed that 27 flavor compounds were identified in cherry fruits, including 10 alcohols, 7 esters, 7 aldehydes, 2 ketones, and 1 organic acid. Twenty-three flavor compounds were identified in cherry wines, including nine esters, eight alcohols, three aldehydes, two organic acids, and one ketone. In cherry fruits, aldehydes, several alcohols, and one ketone were the most prevalent in cv. Tie, and the majority of esters and alcohols in cv. Van. After fermentation, ethanol, butanol, butanal, ethyl propionate, propionaldehyde, 3-hydroxy-2-butanone, and acetic acid increased, whereas 1-hexanol, 3-methyl-3-buten-1-ol, 1-penten-3-ol, ethyl acetate, methyl acetate, (E)-2-hexenal and hexanal decreased. Few differences were detected in the type and content of volatile compounds in cherry wines from cv. Tieton (WT) and cv. Van (WV). Almost all aldehydes are derived from cherry fruits, which cannot be produced during wine-making, and other volatile compounds are almost all produced by saccharomyces cerevisiae. The volatile compounds of cherry wines were determined by row materials and fermentation cultures. Flavor fingerprints were established by HS-GC-IMS and PCA, which provided a theoretical foundation for the evaluation and improvement of flavor quality in cherry wine-making. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Figure 1

12 pages, 2569 KiB  
Article
Potential Antioxidant Activity of Apigenin in the Obviating Stress-Mediated Depressive Symptoms of Experimental Mice
by Adel Alghamdi, Mansour Almuqbil, Mohammad A. Alrofaidi, Abdulhadi S. Burzangi, Ali A. Alshamrani, Abdullah R. Alzahrani, Mehnaz Kamal, Mohd. Imran, Sultan Alshehri, Basheerahmed Abdulaziz Mannasaheb, Nasser Fawzan Alomar and Syed Mohammed Basheeruddin Asdaq
Molecules 2022, 27(24), 9055; https://doi.org/10.3390/molecules27249055 - 19 Dec 2022
Cited by 5 | Viewed by 1892
Abstract
This study aimed to examine the antidepressant properties of apigenin in an experimental mouse model of chronic mild stress (CMS). Three weeks following CMS, albino mice of either sex were tested for their antidepressant effects using the tail suspension test (TST) and the [...] Read more.
This study aimed to examine the antidepressant properties of apigenin in an experimental mouse model of chronic mild stress (CMS). Three weeks following CMS, albino mice of either sex were tested for their antidepressant effects using the tail suspension test (TST) and the sucrose preference test. The percentage preference for sucrose solution and the amount of time spent immobile in the TST were calculated. The brain malondialdehyde (MDA) levels, catalase activity, and reduced glutathione levels were checked to determine the antioxidant potential of treatments. When compared to the control, animals treated with apigenin during the CMS periods showed significantly shorter TST immobility times. Apigenin administration raised the percentage preference for sucrose solution in a dose-dependent manner, which put it on par with the widely used antidepressant imipramine. Animals treated with apigenin displayed a significantly (p ˂ 0.05) greater spontaneous locomotor count (281) when compared to the vehicle-treated group (245). Apigenin was also highly effective in significantly (p ˂ 0.01) lowering plasma corticosterone levels (17 vs. 28 µg/mL) and nitrite (19 vs. 33 µg/mL) produced by CMS in comparison to the control group. During CMS, a high dose (50 mg/kg) of apigenin was given, which greatly increased the reduced glutathione level while significantly decreasing the brain’s MDA and catalase activity when compared to the control group. As a result, we infer that high doses of apigenin may have potential antidepressant effects in animal models via various mechanisms. Full article
Show Figures

Figure 1

23 pages, 3653 KiB  
Article
Influence of Citrates and EDTA on Oxidation and Decarboxylation of Betacyanins in Red Beet (Beta vulgaris L.) Betalain-Rich Extract
by Katarzyna Sutor-Świeży, Justyna Proszek, Łukasz Popenda and Sławomir Wybraniec
Molecules 2022, 27(24), 9054; https://doi.org/10.3390/molecules27249054 - 19 Dec 2022
Cited by 4 | Viewed by 1531
Abstract
The influence of stabilizing activity of citric buffers on betacyanins, as well as their thermal dehydrogenation and decarboxylation in a beetroot betalain-rich extract (BRE), was studied at pH 3–8 and temperature 30, 50 and 85 °C with an additional effect of EDTA. In [...] Read more.
The influence of stabilizing activity of citric buffers on betacyanins, as well as their thermal dehydrogenation and decarboxylation in a beetroot betalain-rich extract (BRE), was studied at pH 3–8 and temperature 30, 50 and 85 °C with an additional effect of EDTA. In acetate/phosphate buffers, the highest stability is observed at pH 5 and it decreases toward pH 3 as well as pH 8, which is more remarkable at 85 °C. For the citrates, a contradictory effect was observed. Citric buffers tend to stabilize the substrate pigments and their intermediary products in acidic solutions, although increase their reactivity at pH 6–8. The highest impact of EDTA addition on pigment retention in acetate buffers is observed at 85 °C and pH 3–5 as well as 8, reflecting the preserving activity of EDTA at the most unfavorable conditions. At lower temperatures, pigment stability in more acidic conditions is still at higher levels even without addition of citrates or EDTA. The most striking effect on generation of betanin derivatives during heating is 2-decarboxylation which preferentially proceeds in the most acidic environment and this generation rate at 85 °C is much higher in the citrate buffers compared to acetates. Full article
(This article belongs to the Special Issue Discovery of New Functional Foods with Bioactive Compounds)
Show Figures

Graphical abstract

12 pages, 976 KiB  
Article
Chemical Composition of Essential Oils of Seven Polygonum Species from Turkey: A Chemotaxonomic Approach
by Azize Demirpolat
Molecules 2022, 27(24), 9053; https://doi.org/10.3390/molecules27249053 - 19 Dec 2022
Cited by 8 | Viewed by 1869
Abstract
Medicinal plants and herbal preparations are gaining attention in the scientific community today, as they are often used intermittently in the treatment of various diseases. The genus of Polygonum (Polygonaceae), known locally as “madimak”, is an aromatic plant widely used in world flavors. [...] Read more.
Medicinal plants and herbal preparations are gaining attention in the scientific community today, as they are often used intermittently in the treatment of various diseases. The genus of Polygonum (Polygonaceae), known locally as “madimak”, is an aromatic plant widely used in world flavors. The chemical composition of the essential oils of dried aerial parts of seven of Polygonum was analyzed by GC-MS. These species are Polygonum lapathifolium L., Polygonum persicaria L., Polygonum arenastrum Bor., Polygonum bellardii All., Polygonum arenarium Waldst. Et Kit., Polygonum aviculare L., and Polygonum cognatum Meissn. Qualitative and quantitative differences were found in the essential oil analysis of the seven Polygonum species. The major compounds were determined as (E)-β-farnesene (19. 46%), dodecanal (15.92%), β-caryophyllene (12.95%), in P. aviculare; (E)-β-farnesene (25.00%), dodecanal (20.45%), β-caryophyllene (9.38%), and caryophyllene oxide (8. 26%) in P. persicaria; dodecanal (25.65%), caryophyllene oxide (13.35%), β-caryophyllene (7.95%), and (E)-β-farnesene (6.20%) in P. lapathifolium, and dodecanal (19.65%), (E)-β-farnesene (13.86%), β-caryophyllene (8.06%), and α-terpineol (7.2%) in P. arenarium, dodecanal (16.23%), β-caryophyllene (16.09%), (E)-β-farnesene (12.26%), caryophyllene oxide (7.94%) in P. bellardii, (E)-β-farnesene (20.75%), dodecanal (17.96%), β-caryophyllene (13.01%), α-terpineol (4.97%) in P. arenastrum, (E)-β-farnesene (9.49%), dodecanal (14.01%), β-caryophyllene (11.92%), geranyl acetate (9.49%), and undecanal (7.35%) in P. cognatum. This study is the most comprehensive study conducted to determine the essential oil components of Polygonum species. In addition, a literature review on the composition of the essential oils of these Polygonum taxa was performed. The essential oil components of the species in our study were revealed for the first time with this study. Full article
Show Figures

Figure 1

15 pages, 1063 KiB  
Article
Effect of Common Cooking and Drying Methods on Phytochemical and Antioxidant Properties of Corchorus olitorius Identified Using Liquid Chromatography-Mass Spectrometry (LC-MS)
by Buyile Ncube, Bhekisisa Dlamini and Daniso Beswa
Molecules 2022, 27(24), 9052; https://doi.org/10.3390/molecules27249052 - 19 Dec 2022
Cited by 2 | Viewed by 1553
Abstract
In this study, Corchorus olitorius leaves were subjected to different thermal treatments (blanching, boiling, drying, frying, and steaming) and analyzed, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. Furthermore, Fourier transform infrared spectroscopy (FTIR) was used to identify functional groups, [...] Read more.
In this study, Corchorus olitorius leaves were subjected to different thermal treatments (blanching, boiling, drying, frying, and steaming) and analyzed, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. Furthermore, Fourier transform infrared spectroscopy (FTIR) was used to identify functional groups, while metabolites were identified with LC-MC. The TPC and antioxidant activity of C. olitorius were significantly (p < 0.05) increased by cooking and drying. The steam-cooked sample had the highest TPC (18.89 mg GAE/g) and TFC (78.42 mg QE/g). With ABTS, FRAP, and DPPH assays, the steam-cooked sample exhibited the highest antioxidant activity of 119.58, 167.31, and 122.23 µM TE/g, respectively. LC-MS identified forty-two (42) metabolites in C. olitorius that included phenolic acid derivatives, flavonoid derivatives, and amino acid derivatives. Overall, steaming appears to be the best cooking method, with respect to the retention of phytochemical compounds and antioxidant activity. Full article
(This article belongs to the Special Issue Fruits and Vegetables as Prospective Reserves of Bioactive Compounds)
Show Figures

Figure 1

30 pages, 13831 KiB  
Review
Non-Covalent Reactions Supporting Antiviral Development
by Ilma Nugrahani, Emy Susanti, Tazkia Adawiyah, Safira Santosa and Agnesya Namira Laksana
Molecules 2022, 27(24), 9051; https://doi.org/10.3390/molecules27249051 - 19 Dec 2022
Viewed by 1890
Abstract
Viruses are the current big enemy of the world’s healthcare systems. As the small infector causes various deadly diseases, from influenza and HIV to COVID-19, the virus continues to evolve from one type to its mutants. Therefore, the development of antivirals demands tremendous [...] Read more.
Viruses are the current big enemy of the world’s healthcare systems. As the small infector causes various deadly diseases, from influenza and HIV to COVID-19, the virus continues to evolve from one type to its mutants. Therefore, the development of antivirals demands tremendous attention and resources for drug researchers around the world. Active pharmaceutical ingredients (API) development includes discovering new drug compounds and developing existing ones. However, to innovate a new antiviral takes a very long time to test its safety and effectiveness, from structure modeling to synthesis, and then requires various stages of clinical trials. Meanwhile, developing the existing API can be more efficient because it reduces many development stages. One approach in this effort is to modify the solid structures to improve their physicochemical properties and enhance their activity. This review discusses antiviral multicomponent systems under the research phase and has been marketed. The discussion includes the types of antivirals, their counterpart compound, screening, manufacturing methods, multicomponent systems yielded, characterization methods, physicochemical properties, and their effects on their pharmacological activities. It is hoped that the opportunities and challenges of solid antiviral drug modifications can be drawn in this review as important information for further antiviral development. Full article
Show Figures

Graphical abstract

13 pages, 3136 KiB  
Article
Cerium-Doped Iron Oxide Nanorod Arrays for Photoelectrochemical Water Splitting
by Hai-Peng Zhao, Mei-Ling Zhu, Hao-Yan Shi, Qian-Qian Zhou, Rui Chen, Shi-Wei Lin, Mei-Hong Tong, Ming-Hao Ji, Xia Jiang, Chen-Xing Liao, Yan-Xin Chen and Can-Zhong Lu
Molecules 2022, 27(24), 9050; https://doi.org/10.3390/molecules27249050 - 19 Dec 2022
Cited by 4 | Viewed by 1721
Abstract
In this work, a simple one-step hydrothermal method was employed to prepare the Ce-doped Fe2O3 ordered nanorod arrays (CFT). The Ce doping successfully narrowed the band gap of Fe2O3, which improved the visible light absorption performance. [...] Read more.
In this work, a simple one-step hydrothermal method was employed to prepare the Ce-doped Fe2O3 ordered nanorod arrays (CFT). The Ce doping successfully narrowed the band gap of Fe2O3, which improved the visible light absorption performance. In addition, with the help of Ce doping, the recombination of electron/hole pairs was significantly inhibited. The external voltage will make the performance of the Ce-doped sample better. Therefore, the Ce-doped Fe2O3 has reached superior photoelectrochemical (PEC) performance with a high photocurrent density of 1.47 mA/cm2 at 1.6 V vs. RHE (Reversible Hydrogen Electrode), which is 7.3 times higher than that of pristine Fe2O3 nanorod arrays (FT). The Hydrogen (H2) production from PEC water splitting of Fe2O3 was highly improved by Ce doping to achieve an evolution rate of 21 μmol/cm2/h. Full article
(This article belongs to the Special Issue Multifunctional Metal Oxides: Synthesis and Applications)
Show Figures

Graphical abstract

20 pages, 5749 KiB  
Article
Multicomponent Characterization of the Flower Bud of Panax notoginseng and Its Metabolites in Rat Plasma by Ultra-High Performance Liquid Chromatography/Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry
by Xiaonan Yang, Ying Xiong, Hongda Wang, Meiting Jiang, Xiaoyan Xu, Yueguang Mi, Jia Lou, Xiaohang Li, He Sun, Yuying Zhao, Xue Li and Wenzhi Yang
Molecules 2022, 27(24), 9049; https://doi.org/10.3390/molecules27249049 - 19 Dec 2022
Cited by 5 | Viewed by 1496
Abstract
The flower bud of Panax notoginseng (PNF) consumed as a tonic shows potential in the prevention and treatment of cardiovascular diseases. To identify the contained multi-components and, in particular, to clarify which components can be absorbed and what metabolites are transformed, unveiling the [...] Read more.
The flower bud of Panax notoginseng (PNF) consumed as a tonic shows potential in the prevention and treatment of cardiovascular diseases. To identify the contained multi-components and, in particular, to clarify which components can be absorbed and what metabolites are transformed, unveiling the effective substances of PNF is of vital significance. A unique ultrahigh-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) profiling approach and efficient data processing by the UNIFITM bioinformatics platform were employed to comprehensively identify the multi-components of PNF and the related metabolites in the plasma of rats after oral administration (at a dose of 3.6 g/kg). Two MS2 data acquisition modes operating in the negative electrospray ionization mode, involving high-definition MSE (HDMSE) and data-dependent acquisition (DDA), were utilized aimed to extend the coverage and simultaneously ensure the quality of the MS2 spectra. As a result, 219 components from PNF were identified or tentatively characterized, and 40 thereof could be absorbed. Moreover, 11 metabolites were characterized from the rat plasma. The metabolic pathways mainly included the phase I (deglycosylation and oxidation). To the best of our knowledge, this is the first report that systematically studies the in vivo metabolites of PNF, which can assist in better understanding its tonifying effects and benefit its further development. Full article
(This article belongs to the Special Issue Natural Products: Phytochemical Analysis & Pharmacological Evaluation)
Show Figures

Figure 1

12 pages, 9252 KiB  
Article
Evaluation of In Vitro Cytotoxic Potential of Avarol towards Human Cancer Cell Lines and In Vivo Antitumor Activity in Solid Tumor Models
by Tatjana P. Stanojkovic, Marina Filimonova, Nadja Grozdanic, Slavica Petovic, Anna Shitova, Olga Soldatova, Alexander Filimonov, Jelena Vladic, Petr Shegay, Andrey Kaprin, Sergey Ivanov and Marina Nikitovic
Molecules 2022, 27(24), 9048; https://doi.org/10.3390/molecules27249048 - 19 Dec 2022
Cited by 2 | Viewed by 1638
Abstract
The goal of this study was to determine the activity in vitro and in vivo of avarol, a sesquiterpene hydroquinone originating from the Dysidea avara sponge from the south Adriatic Sea, against different cancer cell lines and two types of mouse carcinoma. To [...] Read more.
The goal of this study was to determine the activity in vitro and in vivo of avarol, a sesquiterpene hydroquinone originating from the Dysidea avara sponge from the south Adriatic Sea, against different cancer cell lines and two types of mouse carcinoma. To investigate the in vitro cytotoxicity, a human cervix adenocarcinoma cell line (HeLa), human colon adenocarcinoma (LS174), human non-small-cell lung carcinoma (A549), and a normal human fetal lung fibroblast cell line (MRC-5) were used. The in vivo antitumor activity was investigated against two transplantable mouse tumors, the Ehrlich carcinoma (EC) and cervical cancer (CC-5). The effect of avarol on cancer cell survival, which was determined by the microculture tetrazolium test, confirmed a significant in vitro potency of avarol against the investigated cell lines, without selectivity towards MRC-5. The highest cytotoxicity was exhibited against HeLa cancer cells (10.22 ± 0.28 μg/mL). Moreover, potent antitumor activity against two tumor models was determined, as the intraperitoneal administration of avarol at a dose of 50 mg/kg resulted in a significant inhibition of tumor growth in mice. After three administrations of avarol, a 29% inhibition of the EC growth was achieved, while in the case of CC-5, a 36% inhibition of the tumor growth was achieved after the second administration of avarol. Therefore, the results indicate that this marine sesquiterpenoid hydroquinone could be a promising bioactive compound in the development of new anticancer medicine. Full article
(This article belongs to the Special Issue New Anticancer Agents Based on Natural Products)
Show Figures

Figure 1

19 pages, 3718 KiB  
Article
Optimization and Preparation of Tallow with a Strong Aroma by Mild Oxidation
by Yanjing Jin, Junaid Raza, Huanlu Song, Lijin Wang, Qiaojun Wang, Guoli Ma and Yang Xiao
Molecules 2022, 27(24), 9047; https://doi.org/10.3390/molecules27249047 - 19 Dec 2022
Cited by 2 | Viewed by 1296
Abstract
This study was performed to extract and separate the volatiles with solid-phase microextraction (SPME), and was conducted to analyze volatile odor compounds qualitatively and quantitatively in the production of a strong aroma tallow by mild oxidation. A total of 51 odor compounds were [...] Read more.
This study was performed to extract and separate the volatiles with solid-phase microextraction (SPME), and was conducted to analyze volatile odor compounds qualitatively and quantitatively in the production of a strong aroma tallow by mild oxidation. A total of 51 odor compounds were detected in the tallow smelted under different conditions. It was found that the high proportion of aldehydes was an important feature of the aroma components in the oxidized melted tallow, such as 1-hexanal, heptanal, nonanal, octanal, benzaldehyde, etc. Through the determination of various indicators, sensory evaluation, and the gas chromatography-olfaction–mass spectrometry (GC-O–MS) analysis and, in combination with response surface methodology, the optimal process parameters for oxidative smelting of tallow were determined as follows: a reaction temperature of 149.61 °C, a reaction time of 31.68 min, and an airflow rate of 97.44 L/h. The accelerated oxidation test further verified the quality of the oxidized tallow. Full article
Show Figures

Graphical abstract

18 pages, 5162 KiB  
Article
Variation of Saponins in Sanguisorba officinalis L. before and after Processing (Paozhi) and Its Effects on Colon Cancer Cells In Vitro
by Zhengyang Wang, Chunjuan Yang, Lihong Wu, Jiahui Sun, Zhenyue Wang and Zhibin Wang
Molecules 2022, 27(24), 9046; https://doi.org/10.3390/molecules27249046 - 19 Dec 2022
Viewed by 1372
Abstract
The incidence of colon cancer is increasing year over year, seriously affecting human health and quality of life in recent years. However, traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. S. officinalis Saponins (S-Saponins), the potential [...] Read more.
The incidence of colon cancer is increasing year over year, seriously affecting human health and quality of life in recent years. However, traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. S. officinalis Saponins (S-Saponins), the potential compound of TCM, displays multiple biological activities in colon cancer treatment. In our study, ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) combined with multivariate statistical analysis were performed to analyze and identify raw and processed saponins. Then, MTT and cell migration assays were used to preliminarily explore the effects of saponins in vitro on colon cancer cells. The results showed that 29 differential saponins compounds under Paozhi were identified by UHPLC-MS/MS. Moreover, in vitro validation showed that Sprocessed better inhibited the proliferation and migration of colon cancer cells than Sraw. This study provides a basis for the determination of the chemical fundamentals of the efficacy changes during Paozhi through inferring the changes in saponin components and its possible transformation mechanisms before and after processing S. officinalis. Meanwhile, it also provides new insights into potential bioactive ingredients for the treatment of colon cancer. Full article
Show Figures

Figure 1

25 pages, 9286 KiB  
Review
Molecular Iodine Capture by Covalent Organic Frameworks
by Yuting Yang, Changzheng Tu, Hongju Yin, Jianjun Liu, Feixiang Cheng and Feng Luo
Molecules 2022, 27(24), 9045; https://doi.org/10.3390/molecules27249045 - 19 Dec 2022
Cited by 16 | Viewed by 3133
Abstract
The effective capture and storage of volatile molecular iodine from nuclear waste is of great significance. Covalent organic frameworks (COFs) are a class of extended crystalline porous polymers that possess unique architectures with high surface areas, long-range order, and permanent porosity. Substantial efforts [...] Read more.
The effective capture and storage of volatile molecular iodine from nuclear waste is of great significance. Covalent organic frameworks (COFs) are a class of extended crystalline porous polymers that possess unique architectures with high surface areas, long-range order, and permanent porosity. Substantial efforts have been devoted to the design and synthesis of COF materials for the capture of radioactive iodine. In this review, we first introduce research techniques for determining the mechanism of iodine capture by COF materials. Then, the influencing factors of iodine capture performance are classified, and the design principles and strategies for constructing COFs with potential for iodine capture are summarized on this basis. Finally, our personal insights on remaining challenges and future trends are outlined, in order to bring more inspiration to this hot topic of research. Full article
(This article belongs to the Special Issue Molecule-Based Crystalline Materials)
Show Figures

Figure 1

17 pages, 5019 KiB  
Article
Antiviral Potential of Small Molecules Cordycepin, Thymoquinone, and N6, N6-Dimethyladenosine Targeting SARS-CoV-2 Entry Protein ADAM17
by Jiayue He, Shuguang Liu, Qi Tan, Zhiying Liu, Jiewen Fu, Ting Li, Chunli Wei, Xiaoyan Liu, Zhiqiang Mei, Jingliang Cheng, Kai Wang and Junjiang Fu
Molecules 2022, 27(24), 9044; https://doi.org/10.3390/molecules27249044 - 19 Dec 2022
Cited by 6 | Viewed by 1803
Abstract
COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2 of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely relevant to [...] Read more.
COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2 of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely relevant to highly expressed ADAM17. However, ADAM17 regulation in SARS-CoV-2 invasion and its role on small molecules are unclear. Here, we evaluated the ADAM17 inhibitory effects of cordycepin (CD), thymoquinone (TQ), and N6, N6-dimethyladenosine (m62A), on cancer cells and predicted the anti-COVID-19 potential of the three compounds and their underlying signaling pathways by network pharmacology. It was found that CD, TQ, and m62A repressed the ADAM17 expression upon different cancer cells remarkably. Moreover, CD inhibited GFP-positive syncytia formation significantly, suggesting its potential against SARS-CoV-2. Pharmacological analysis by constructing CD-, TQ-, and m62A-based drug-target COVID-19 networks further indicated that ADAM17 is a potential target for anti-COVID-19 therapy with these compounds, and the mechanism might be relevant to viral infection and transmembrane receptors-mediated signal transduction. These findings imply that ADAM17 is of potentially medical significance for cancer patients infected with SARS-CoV-2, which provides potential new targets and insights for developing innovative drugs against COVID-19. Full article
Show Figures

Figure 1

21 pages, 1165 KiB  
Review
Phytochemical Compounds and Nanoparticles as Phytochemical Delivery Systems for Alzheimer’s Disease Management
by Saad Bakrim, Sara Aboulaghras, Naoual El Menyiy, Nasreddine El Omari, Hamza Assaggaf, Learn-Han Lee, Domenico Montesano, Monica Gallo, Gokhan Zengin, Yusra AlDhaheri and Abdelhakim Bouyahya
Molecules 2022, 27(24), 9043; https://doi.org/10.3390/molecules27249043 - 19 Dec 2022
Cited by 2 | Viewed by 3186
Abstract
Alzheimer’s disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways [...] Read more.
Alzheimer’s disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer’s disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble β-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid β formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer’s disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer’s disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer’s disease management. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

8 pages, 1298 KiB  
Communication
A Facile Synthesis of 2-Oxazolines via Dehydrative Cyclization Promoted by Triflic Acid
by Tao Yang, Chengjie Huang, Jingyang Jia, Fan Wu and Feng Ni
Molecules 2022, 27(24), 9042; https://doi.org/10.3390/molecules27249042 - 19 Dec 2022
Cited by 3 | Viewed by 1921
Abstract
2-oxazolines are common moieties in numerous natural products, pharmaceuticals, and functional copolymers. Current methods for synthesizing 2-oxazolines mainly rely on stoichiometric dehydration agents or catalytic dehydration promoted by specific catalysts. These conditions either generate stoichiometric amounts of waste or require forcing azeotropic reflux [...] Read more.
2-oxazolines are common moieties in numerous natural products, pharmaceuticals, and functional copolymers. Current methods for synthesizing 2-oxazolines mainly rely on stoichiometric dehydration agents or catalytic dehydration promoted by specific catalysts. These conditions either generate stoichiometric amounts of waste or require forcing azeotropic reflux conditions. As such, a practical and robust method that promotes dehydrative cyclization while generating no byproducts would be attractive to oxazoline production. Herein, we report a triflic acid (TfOH)-promoted dehydrative cyclization of N-(2-hydroxyethyl)amides for synthesizing 2-oxazolines. This reaction tolerates various functional groups and generates water as the only byproduct. This method affords oxazoline with inversion of α-hydroxyl stereochemistry, suggesting that alcohol is activated as a leaving group under these conditions. Furthermore, the one-pot synthesis protocol of 2-oxazolines directly from carboxylic acids and amino alcohols is also provided. Full article
(This article belongs to the Special Issue Synthesis and Modification of Nitrogen Heterocyclic Compounds)
Show Figures

Figure 1

20 pages, 2236 KiB  
Article
The Impact of Software Used and the Type of Target Protein on Molecular Docking Accuracy
by Larisa Ivanova and Mati Karelson
Molecules 2022, 27(24), 9041; https://doi.org/10.3390/molecules27249041 - 18 Dec 2022
Cited by 6 | Viewed by 2309
Abstract
The modern development of computer technology and different in silico methods have had an increasing impact on the discovery and development of new drugs. Different molecular docking techniques most widely used in silico methods in drug discovery. Currently, the time and financial costs [...] Read more.
The modern development of computer technology and different in silico methods have had an increasing impact on the discovery and development of new drugs. Different molecular docking techniques most widely used in silico methods in drug discovery. Currently, the time and financial costs for the initial hit identification can be significantly reduced due to the ability to perform high-throughput virtual screening of large compound libraries in a short time. However, the selection of potential hit compounds still remains more of a random process, because there is still no consensus on what the binding energy and ligand efficiency (LE) of a potentially active compound should be. In the best cases, only 20–30% of compounds identified by molecular docking are active in biological tests. In this work, we evaluated the impact of the docking software used as well as the type of the target protein on the molecular docking results and their accuracy using an example of the three most popular programs and five target proteins related to neurodegenerative diseases. In addition, we attempted to determine the “reliable range” of the binding energy and LE that would allow selecting compounds with biological activity in the desired concentration range. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Design II)
Show Figures

Figure 1

11 pages, 921 KiB  
Article
Effect of the Addition of Lemongrass (Cymbopogon citratus) on the Quality and Microbiological Stability of Craft Wheat Beers
by Justyna Belcar and Józef Gorzelany
Molecules 2022, 27(24), 9040; https://doi.org/10.3390/molecules27249040 - 18 Dec 2022
Cited by 2 | Viewed by 2002
Abstract
Lemongrass (Cymbopogon citratus) is a valuable source of vitamins, macro- and microelements, and essential oils. The purpose of this study was to compare the physicochemical properties, sensory properties, antioxidant activity, and microbiological stability of wheat beers enriched with varying additions of [...] Read more.
Lemongrass (Cymbopogon citratus) is a valuable source of vitamins, macro- and microelements, and essential oils. The purpose of this study was to compare the physicochemical properties, sensory properties, antioxidant activity, and microbiological stability of wheat beers enriched with varying additions of crushed lemongrass. Sensory evaluation showed that wheat beers enriched with 2.5% m/v lemongrass were characterised by balanced taste and aroma (overall impression). Physicochemical analysis of the wheat beers showed that increasing the concentration of lemongrass in the finished product negatively affected the ethanol content. Alcohol content in wheat beer enriched with 1% m/v lemongrass was on average 14.74% higher than wheat beer enriched with 2.5% m/v lemongrass and on average 17.93% higher than wheat beer enriched with 5% m/v addition of lemongrass. The concentration of lemongrass in the finished product also increased the acidity of the beers and affected the colour of the wheat beers compared to the control beer. The total polyphenol content and antioxidant activity of lemongrass-enriched wheat beers varied. Of the lemongrass-enriched beers analysed, the beer product with 5% m/v lemongrass was the most microbiologically stable. According to the study, crushed lemongrass-enriched wheat beer may represent a new trend in the brewing industry, but the brewing process still needs to be improved. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

18 pages, 7007 KiB  
Article
Nerve Regeneration Effect of a Composite Bioactive Carboxymethyl Chitosan-Based Nerve Conduit with a Radial Texture
by Yijie Zhang, Zhiwen Jiang, Yanting Wang, Lixin Xia, Shuqin Yu, Hongjian Li, Wei Zhang, Wanshun Liu, Kai Shao and Baoqin Han
Molecules 2022, 27(24), 9039; https://doi.org/10.3390/molecules27249039 - 18 Dec 2022
Cited by 6 | Viewed by 1487
Abstract
Chitosan (CTS) has been used as a nerve guidance conduit (NGC) material for bridging peripheral nerve defects due to its biocompatible, biodegradable, and non-toxic properties. However, the nerve regeneration effect of chitosan alone is restricted due to its inadequate biological activity. Herein, a [...] Read more.
Chitosan (CTS) has been used as a nerve guidance conduit (NGC) material for bridging peripheral nerve defects due to its biocompatible, biodegradable, and non-toxic properties. However, the nerve regeneration effect of chitosan alone is restricted due to its inadequate biological activity. Herein, a composite, bioactive chitosan based nerve conduit, consisting of outer warp-knitted tube scaffold made from medical-grade chitosan fiber, and inner porous cross linked carboxymethyl chitosan (C-CM-CTS) sponge with radial texture was developed. The inner wall of the scaffold was coated with C-CM-CTS solution. CM-CTS provided favorable bioactivities in the composite chitosan-based nerve conduit. An in vitro study of CM-CTS revealed its satisfying biocompatibility with fibroblast and its inhibition of oxidative damage to Schwann cells. As the internal filler of the NGC, the lyophilized sponge of C-CM-CTS showed a longitudinal guidance effect for nerve reconstruction. After 10 mm defect in rat sciatic nerve was bridged with the composite bioactive chitosan-based nerve conduit, the nerve conduit was able to effectively promote axonal regeneration and played a positive role in inducing nerve regeneration and functional recovery. In addition to the functional advantages, which are equal to those of an autograft; the technology for the preparation of this conduit can be put into mass production. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop