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Abstract: The modern development of computer technology and different in silico methods have
had an increasing impact on the discovery and development of new drugs. Different molecular
docking techniques most widely used in silico methods in drug discovery. Currently, the time and
financial costs for the initial hit identification can be significantly reduced due to the ability to perform
high-throughput virtual screening of large compound libraries in a short time. However, the selection
of potential hit compounds still remains more of a random process, because there is still no consensus
on what the binding energy and ligand efficiency (LE) of a potentially active compound should be. In
the best cases, only 20–30% of compounds identified by molecular docking are active in biological
tests. In this work, we evaluated the impact of the docking software used as well as the type of the
target protein on the molecular docking results and their accuracy using an example of the three most
popular programs and five target proteins related to neurodegenerative diseases. In addition, we
attempted to determine the “reliable range” of the binding energy and LE that would allow selecting
compounds with biological activity in the desired concentration range.

Keywords: molecular docking; high-throughput virtual screening; binding energy; ligand efficiency;
neurodegenerative diseases

1. Introduction

The identification of drug candidates is one of the most laborious and difficult steps
in the development of new drugs [1,2]. However, the development of different computer-
aided drug design (CADD) techniques, as well as the increase in the number of known
three-dimensional (3D) structures of protein targets in recent decades, has made it possible
to reduce both time and financial costs for the search and development of new drugs [3]. The
main CADD tools are quantitative structure–activity relationship (QSAR), pharmacophore
modeling, homology modeling, molecular docking and molecular dynamics, and high-
throughput virtual screening (HTVS) [3,4]. Molecular docking and HTVS have gained
considerable importance in CADD, with the following major objectives: (I) the possibility of
rapidly screening large compound libraries, (II) ranking compounds by calculated binding
free energy values, (III) prioritizing binding modes to the studied target and (IV) assisting
the interpretation of experimental observations [5,6]. Over the past two decades, about
60 different computer programs for molecular docking have been developed [7]. The main
goal of a molecular docking program is the prediction of a possible binding mode of a
small-molecule ligand at the active site of the target protein. Thereafter, based on the
predicted pose, the docking program estimates the binding affinity (Gibbs free energy of
the binding or docking score) [8,9]. The predicted binding free energy is one of the main
parameters that allow for the initial separation of possible binding ligands from molecules
that are unlikely to bind a target [9,10]. However, such initial discrimination may leave
some active compounds out. Another important criterion for the initial filtering of HTVS
results and for the further selection of potential candidates for experimental testing is ligand
efficiency (LE)— “a useful metric for lead selection” [11,12]. The most common values
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for the selection of potential candidates that are currently accepted in drug design are
values less than −6.0 kcal/mol (in some cases, lower than −8.0 kcal/mol) for binding free
energy [13] and values greater than 0.3 kcal/mol per heavy atom (i.e., a non-hydrogen atom)
for LE [14,15]. Both parameters are routinely used in drug design [16–18]. However, there
is still no consensus on the range that these parameters should fall within for biologically
active compounds [19]. According to the published data, typical hit rates from experimental
screening can range between 0.01% and 0.14%, whereas HTVS typically gives hit rates
between 1% and 40% [20,21]. One of the main reasons for the still relatively low efficiency
of HTVS and molecular docking may be due to simplifications and assumptions in the
scoring functions that serve to increase the calculation speed. The main simplifications
are (I) neglecting water explicitly as a solvent by most docking programs, (II) neglecting
conformational states of the protein, which is often treated as a rigid body, and (III) the use
of simple potential energy functions, such as force fields or statistical potentials [18]. These
simplifications of protein–ligand interaction modeling are manifested by inaccuracies in
pose ranking and poor performance in the prediction of binding free energies [10]. The
available molecular docking programs apply different types of force fields, scoring functions
and search algorithms, and each of these can affect the predictive power of virtual screening
and molecular docking. By evaluating the accuracy of docking pose predictions and the
virtual screening of six different molecular docking programs, Cross et al. showed that
modifying the basic parameters in the molecular docking program has a significant effect on
docking and virtual screening results [22]. In addition, the structure, functions, and features
of the target protein can also have a great influence on the results of molecular docking.
Wang et al. demonstrated that the predictive power of each of the ten studied docking
programs is quite different for different protein families [23]. This dependence on the type
of target protein is obviously due to the different types of interactions playing a crucial role
in ligand binding. For non-covalent binding, the protein–ligand interactions include ionic
interactions, hydrogen bonds and Van der Waals (VdW) interactions (including dispersion,
polar and induced interactions). Theoretically, these different types of interactions can
be estimated in the most accurate way by using quantum mechanics. However, despite
enormous progress in computational power, this approach is still prohibitively expensive
for HTVS purposes [24]. Although currently used force fields and scoring functions are, in
general, well parametrized, properly accounting for polarization effects and detailed proton
affinity estimations are still lacking [18]. The efficiency of HTVS or molecular docking can
be improved by visually inspecting the binding poses of compounds with the best binding
energy or LE [25]. However, this is often subjective and, in the case of large-scale HTVS, can
be complicated due to a large number of hit compounds and docked poses [9]. Moreover, it
is worth noting that the accuracies of the binding free energy predictions of most available
docking programs have a standard deviation of about 2–3 kcal/mol, which is not sufficient
to provide a confident ranking of compounds [26,27]. Therefore, to date, the main goal
of molecular docking remains the “enrichment” of the original library with compounds
that show strong binding upon testing. Thus, proper prediction of the binding energy and
LE, as well as the related software selection, remain the first and most important features
influencing the efficiency and success of the early stages of drug development.

The main goal of this work was to evaluate the impact of the docking software as well
as the type of the target protein on the molecular docking results and its accuracy using
an example of the three most popular programs [3] (AutoDock 4.2.6 [28], AutoDock Vina
1.1.2 [29] and GLIDE [30–32]) and five target proteins related to neurodegenerative diseases.
In addition, we attempted to identify a “reliable range” of binding energy and LE and to
evaluate its dependence on the software used.
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1.1. Target Proteins

With an improvement in the quality of life and medical services, life expectancy is
also increasing, which in turn leads to an aging population and the spread of age-related
diseases, particularly neurodegenerative diseases. Many organizations and individual
laboratories are working on the development of treatment for neurodegenerative diseases,
but there is still no effective therapy. The main obstacles are the complexity of the brain
and its working mechanisms, insufficient availability of resources and ethical limitations.
However, advances in modern computer technology have allowed for avoiding these
limitations. Currently, enough protein targets have been found to be directly or indirectly
associated with neurodegenerative diseases [33]. Such a variety of potential targets arises
from the fact that most neurodegenerative diseases are characterized by multiple disorders.
In our work, five proteins related to Alzheimer’s (AD) and Parkinson’s (PD) diseases were
selected as target proteins for molecular docking (Table 1).

Table 1. The list of the studied target proteins.

Target Classification Disease Ref. PDB ID Ref.

AChE Hydrolase

AD

[34,35] 4EY6 [36]

BACE1 Hydrolase [37,38] 6EQM [39]

GSK3β Transferase [40] 1PYX [41]

SERT Transport protein [42]
5I6X

[43]
5I73

TrkA Transferase PD [44] 4AOJ [45]

Each of the selected proteins belongs to a different class and has its own features and
characteristics, which can have a significant impact on the docking results. The most distinct
feature of acetylcholinesterase (AChE) is its exceptional active site structure (Figure 1A).
The AChE active site represents a deep and narrow gorge about 20 Å long, which penetrates
more than halfway into the enzyme and widens out close to its base [46]. This structure
of the active site may be the reason why, during molecular docking, active compounds
with a relatively large molecular size are automatically excluded. It can be assumed that,
in the case of AChE, the results of the virtual screening largely depend on the search
algorithm used to treat ligand flexibility and the accuracy of the scoring function. In the
case of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) (Figure 1B) and
serotonin transporter (SERT) (Figure 1C), the active site has an open conformational state,
which directly affects interactions with the ligand, and, accordingly, should be considered
during the docking procedure [43,47]. Another feature of SERT is the presence of an
additional (allosteric) binding site (Figure 1D), the occupancy of which sterically hinders
ligand unbinding from the central site [43]. Thus, it is reasonable to assume that small-
molecule ligands should be docked at both active sites, which increases the amount of
work and complicates the selection of potential candidates. In the development of new
inhibitors of glycogen synthase kinase 3 beta (GSK3β) (Figure 1E) and tropomyosin receptor
kinase A (TrkA) (Figure 1F), the main challenge is to secure the selectivity inhibitors due
to the multiple roles of GSK3β and TrkA in the regulation of cellular processes [48,49]. A
molecular dynamics simulation study and a thorough analysis of the binding poses of
known GSK3β inhibitors by Arfeen et al. showed that strong hydrogen bonding with Lys85
has a crucial impact on the selectivity of most GSK3β inhibitors [50]. In addition to specific
hydrogen bonding, as in the case of GSK3β, hydrophobic interactions in and around the
binding site of the adenine ring of ATP are also important for TrkA inhibitors [51]. Thus,
the force field and the scoring function can have a strong influence on the results of virtual
screening during the development of new inhibitors of GSK3β and TrkA.
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Figure 1. Selected target proteins: (A) human AChE in complex with (-)-galantamine (PDB ID: 
4EY6); (B) human BACE1 in complex with inhibitor CNP520 (PDB ID: 6EQM); (C) ts3 human SERT 
in complex with paroxetine at the central site (PDB ID: 5I6X); (D) ts3 human SERT in complex with 
S-citalopram at the allosteric site (PDB ID: 5I73); (E) human GSK3β in complex with non-selective 
ATP-mimetic inhibitor (PDB ID: 1PYX); (F) human TrkA in complex with the inhibitor AZ-23 (PDB 
ID: 4AOJ). All target proteins are shown as a molecular surface, and the co-crystallized ligands are 
stick models colored green (carbon), blue (nitrogen), red (oxygen) and purple (phosphorus). 

1.2. Molecular Docking Software 
1.2.1. AutoDock 4.2.6 

The AutoDock program was developed in 1989 by the Scripps Research Institute and 
remains one of the most cited molecular docking software. For instance, the paper by Mor-

Figure 1. Selected target proteins: (A) human AChE in complex with (-)-galantamine (PDB ID: 4EY6);
(B) human BACE1 in complex with inhibitor CNP520 (PDB ID: 6EQM); (C) ts3 human SERT in
complex with paroxetine at the central site (PDB ID: 5I6X); (D) ts3 human SERT in complex with
S-citalopram at the allosteric site (PDB ID: 5I73); (E) human GSK3β in complex with non-selective
ATP-mimetic inhibitor (PDB ID: 1PYX); (F) human TrkA in complex with the inhibitor AZ-23 (PDB
ID: 4AOJ). All target proteins are shown as a molecular surface, and the co-crystallized ligands are
stick models colored green (carbon), blue (nitrogen), red (oxygen) and purple (phosphorus).
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1.2. Molecular Docking Software
1.2.1. AutoDock 4.2.6

The AutoDock program was developed in 1989 by the Scripps Research Institute and
remains one of the most cited molecular docking software. For instance, the paper by
Morris et al. [28], published in 2009 and reporting on the 4th version of AutoDock, as of
October 2022, has been cited more than 15.5 thousand times. AutoDock is a free available
molecular docking program based on a semiempirical free energy force field and has a
variety of search algorithms, including a Monte Carlo Simulated Annealing algorithm, a
Genetic Algorithm (GA) and a rapid hybrid local search GA, also known as the Lamarckian
Genetic Algorithm (LGA) [26,52,53]. The major advances of the semiempirical free energy
force field are the use of an improved thermodynamic model of the ligand–protein binding
process and a full desolvation model, including terms for all atom types. Moreover, this
type of force field uses an improved model of directionality in hydrogen bonds that allows
for predicting the proper alignment of groups with multiple hydrogen bonds [26]. In
the present work, the LGA was used as a search algorithm because it gives more reliable
and efficient results and makes it possible to operate with ligands with a large number of
degrees of freedom [53]. However, it is worth noting that a number of rotatable bonds in
the ligand greater than six may cause inaccurate results [54]. One of the disadvantages
of AutoDock is the time required to prepare input files and the relatively slow speed
of calculations in the case of docking ligands one by one. In our experience, docking a
single compound with a molecular weight of 350 to 500 Da can take up to 15 min with
25 AutoDock runs, which is not appropriate for HTVS. However, Scripps Research Institute
has now developed an additional graphical interface, Raccoon, that automatically carries
out some of the most common HTVS preparation steps and generates scripts for running
HTVS [55]. In the present study, Raccoon v.1.0f [55] was used for the preparation of input
files and for the generation of HTVS scripts.

1.2.2. AutoDock Vina 1.1.2

AutoDock Vina 1.1.2 (hereinafter referred to as Vina 1.1.2) is one of the open-source
docking engines of the AutoDock Suite that was developed and initially released in 2010
by Dr. Oleg Trott in the Molecular Graphics Lab at The Scripps Research Institute [29]. Like
AutoDock 4, Vina is also one of the most cited (over 21,000 citations) software used for
molecular docking. Depending on the task and its complexity, Vina can run up to 100 times
faster than AutoDock 4.2.6 [29]. The improved efficiency of calculations is ensured using
a Monte Carlo iterated search algorithm combined with the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) [56] gradient-based optimizer that in turn leads to better docking results
with fewer scoring function evaluations. The Vina scoring function is based on the com-
bination of advantages of knowledge-based potentials and empirical scoring functions.
The program extracts empirical information from both the conformational preferences of
receptor–ligand complexes and experimental affinity measurements [29]. For the calibra-
tion of both the AutoDock 4.2.6 and Vina programs, the same test set of 30 structurally
known protein–ligand complexes was used [28,29]. However, it has been noted that Vina
demonstrates significantly better average accuracy for binding mode predictions [29,57].
Moreover, according to the results of independent tests, Vina was recognized as “a strong
competitor against the other programs, and at the top of the pack in many cases” [58]. In
the case of Vina, it is not needed to run separate docking or virtual screening calculations
and to generate docking parameter and grid map files. Only PDBQT files are required,
which can be easily generated using the Raccoon graphical interface [55]. Due to this, Vina
can be easily adapted for HTVS of large libraries of compounds in batch mode [59].
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1.2.3. Glide Docking

Glide is a commercially available program implemented in the Schrödinger Maestro
software. The program was released in 2004 as “a new approach for rapid, accurate docking
and scoring” [30,32]. Along with AutoDock software, Glide is a frequently used molecular
docking program [3] that uses an empirical scoring function in its work. The use of the
OPLS (Optimized Potentials for Liquid Simulations) force field allows for comprehensive
orientational, conformational and positional ligand binding pose calculations followed by
subsequent conformational refinement using the Monte Carlo search algorithm [3,30–32].
According to the published data, Glide binding pose prediction accuracy is approximately
twice as high as the accuracy of other molecular docking programs (GOLD and FlexX) [30].
The main advantage of this molecular docking software is its intuitive protocol, making
it easy to use for beginners, and its minimal requirements and time for preparing input
files. However, the commercial distribution of this software may limit its applicability.
The virtual screening of a large number of compounds can be performed using a specially
designed Glide virtual screening workflow (Glide VSW) that enables the docking of lig-
ands against one or more targets simultaneously. Both Glide docking and Glide VSW
include ligand preparation, the filtering of results and the ability to select three incremental
stages of ranking accuracy: high-throughput virtual screening (Glide HTVS), standard
precision (Glide SP) and extra precision level (Glide XP) [60]. HTVS precision level is a
less stringent and the fastest docking method in Glide for efficiently enriching a million
compound libraries. The main objective of this type of docking is to estimate the size
and volume of ligands, and if the volume exceeds the volume of the binding site of the
receptor, then the ligand is automatically excluded from further docking procedures [61].
However, such automatic exclusion of ligands from the sample pool can have a significant
impact on the results. Glide SP performs a more forgiving evaluation of ligands that
have a reasonable propensity to bind to a receptor, even if the predicted binding pose has
significant imperfections [30]. The use of Glide SP as a separate module of Schrödinger
Maestro software or as a second step in Glide VSW minimizes false negatives in the final
set of compounds. However, even at this level of accuracy, Glide can automatically exclude
some ligands from the sample pool due to their molecular size. Glide XP is usually the last
stage of Glide VSW for the further elimination of false positives, accomplished by more
extensive sampling and advanced scoring, resulting in higher enrichment of the final set
of compounds. Glide XP performs semi-quantitative ranging of ligands by their ability to
bind to a target protein, which is considered a rigid body. The main advantages of Glide
XP are (I) the application of large desolvation penalties to both ligand and protein polar
and charged groups in appropriate cases and (II) the identification of specific structural
motifs that provide exceptionally large contributions to enhanced binding affinity [60].

2. Results and Discussions
2.1. Binding Energy and Ligand Efficiency as Selection Criteria

One of the first questions during the virtual screening results analysis is as follows:
which criterion is better for the effective and successful selection of potential drug candi-
dates? How effective is the binding energy or LE as a selection criterion?

In order to examine this, the dataset for each target protein was first docked to the
respective active site using three selected molecular docking programs (AutoDock 4.2.6 [28],
Vina 1.1.2 [29] and Glide [30–32]). Detailed molecular docking results for each molecular
target are given in the Supplementary Materials, i.e., AChE docking results—Table S1
(Supplementary Materials); BACE1 docking results—Table S2; GSK3β docking results—
Table S3; SERT central and allosteric binding sites—Tables S4 and S5, respectively; and TrkA
docking results—Table S6. After that, the molecular docking results for all target proteins
were sorted and analyzed according to the binding energy and LE. Values of LE higher
than 0.3 and values of the binding energy lower than −8.0 kcal/mol were used as currently
accepted reference values for potentially active compounds in drug design [13–15].
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For all studied docking programs, the composition of the final set of compounds,
selected by binding energy (∆G ≤ −8.0 kcal/mol), is almost identical for all target proteins,
and the proportion of each group of compounds is approximately 30% (Figure 2). However,
it is noticeable that the composition of the final set of compounds, as well as its size,
depends not only on the type of target protein but also on the software used. Thus,
it can be suggested that using the same binding energy threshold for different types
of target proteins, as well as for different software, limits the efficient and successful
selection of potential drug candidates. As can be seen in Figure 2, for TrkA, almost all
compounds of the initial benchmark set of compounds can be selected as potentially high-
active compounds based on their binding energy calculated by Vina 1.1.2 (148 compounds
of 150 with ∆G ≤ −8.0 kcal/mol). In contrast to Vina 1.1.2, the use of such a threshold
value of binding energy in the case of Glide SP or Glide XP docking for TrkA is more reliable
and allows one to obtain a final set of compounds with a high number of “lead” compounds
(pIC50 ≥ 8), namely 22 compounds of 41 (53%) for Glide SP and 22 compounds of 37 (59%)
for Glide XP (Figure 2). Thus, it can be assumed that the binding energy of −8.0 kcal/mol
is not a “universal” threshold value and should be selected according to the software
used as well as the type of target protein. For instance, for TrkA, in the case of Vina 1.1.2,
the use of binding energy lower than −10.0 kcal/mol as a selection criterion can help to
significantly reduce the size of the final set of compounds and increase the number of “lead”
compounds in it (49 compounds with ∆G ≤ −10.0 kcal/mol, of which 32 compounds (65%)
with pIC50 ≥ 8) (Table S6). It should be noted that, in the case of BACE1, the use of this
threshold value of the binding energy (∆G ≤ −8.0 kcal/mol) is a suitable selection criterion
only for the Vina 1.1.2 docking results. The selection of compounds by their binding energy
calculated by other studied programs (AutoDock 4.2.6 and Glide) failed (Figure 2). Based
on these results, the binding energy threshold of −8.0 kcal/mol is not suitable for the
reliable identification of potentially active compounds for AChE, GSK3β and SERT, and
a much lower binding energy value should be used. Moreover, for target proteins such
as BACE1 and TrkA, a higher binding energy should be used as a reference value for the
reliable selection of potential drug candidates. For instance, in the case of AutoDock 4.2.6,
an increase in the binding energy threshold value of up to −7.0 kcal/mol allows for the
selection of a much larger number of potential hit compounds for BACE1 and TrkA, with 43
and 72 compounds, respectively, and at least 40% of this set are compounds with pIC50 ≥ 8
(Tables S2 and S6).

Further analysis of the docking results showed that the selection of compounds by
LEs is very similar to the selection of compounds by binding energy (Figure 3). The ratio of
the number of “lead” (pIC50 ≥ 8), “hit” (pIC50 = 6–5) and low-active (inactive, pIC50 ≤ 4)
compounds in the final set of compounds remains at the level of 1:3. Nevertheless, for some
targets, the use of LE may be more efficient than using binding energy as a selection criterion.
For example, for GSK3β, the selection of compounds by LE allowed for a reduction in the
number of low-active (inactive) compounds in the final set of compounds by almost two
times (Figures 2 and 3).

It was also seen that, for TrkA, in the case of Glide SP and Glide XP, the number of
highly active compounds in the final set increased significantly, from 53% to 72% of “lead”
compounds in final set. Thus, in some cases, the LE can be considered a more efficient
selection criterion. However, regardless of which parameter is used to select potential drug
candidates (the binding energy or LE), the threshold value should be selected individually
for each task.
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2.2. Identification of a “Reliable Range” of Binding Energy and LE

Another important question that researchers face in computational modeling is if
there is a “reliable range” for the docking binding free energy or LE. Additionally, based
on this, would it be possible to select compounds with biological activity in the desired
concentration range?

Further analysis was focused on the evaluation of docking results by the best and
poorest values of binding energy and LE, as well as their average values for each group of
compounds and for each molecular target separately.

2.2.1. AutoDock 4.2.6

According to the AutoDock 4.2.6 docking results, for each target, the calculated
binding energy values are within the same range for each group of compounds (Table 2),
and consequently, it is not possible to reliably filter highly active compounds from low-
active or inactive compounds. However, further evaluation of the average binding energy
(Table 2) showed that, for some of the studied targets, it is possible to suggest the most
optimal binding energy at which a compound is more likely to be biologically active. Thus,
the selection of compounds with binding energies below −11.0 kcal/mol for AChE, below
−9.0 kcal/mol for GSK3β and below −7.0 kcal/mol for TrkA can increase the proportion
of compounds with pIC50 higher than 8 in the final set of compounds (Table 2). It should
be noted that for AChE, the standard deviation of the binding energy for the 1st and 3rd
groups of compounds is relatively high compared to those for other targets. Therefore,
it can be assumed that the identified binding energy threshold value for AChE does not
guarantee that all selected compounds are highly active, but it can be a useful criterion
for the initial filtration of HTVS results. Unfortunately, based on the data obtained, it is
difficult to establish a similar threshold average value of the binding energy for highly
active compounds for BACE1, GSK3β and SERT (both active sites). It can be speculated
that, in the case of BACE1, compounds with binding energies higher than −5.0 kcal/mol
are more likely to be inactive or to have their pIC50 lower than 4. In addition, it can be
assumed that biological activity in the range of pIC50 up to 5 can be expected for compounds
with binding energies lower than −6.0 kcal/mol. For GSK3β, a binding energy below
−8.0 kcal/mol can be suggested as a threshold value for the filtration of the initial library.
In the case of the central binding site of SERT, there is no correlation between binding
energy and biological activity. In the case of the allosteric binding site of SERT, it can be
said that the calculated binding energy is inversely proportional to the biological activity
of the compounds. Therefore, it can be assumed that docking to the central binding site
can likely lead to more informative results despite the lack of correlation between binding
energy and biological activity (Table 2).

Further evaluation of the docking results showed that, for all targets, the obtained
best and poorest LE values are almost identical for each group of compounds. They do not
allow for ranking compounds by their biological activity and, accordingly, cannot provide
a reliable ranking of compounds by their biological activity (Table 2). This assumption can
also be supported by the fact that the best LE value for each target was obtained for a low-
active compound, namely compound CHEMBL77510 with a pIC50 of 3.252 for the AChE
dataset (Table S1), compounds CHEMBL3261081 and CHEMBL3261080 with pIC50 values of
3.102 and 2.086 for the BACE1 dataset (Table S2), respectively, compound CHEMBL608419
with a pIC50 of 4.000 for the GSK3β dataset (Table S3), compound CHEMBL1173276 with a
pIC50 of 4.000 for the SERT dataset (Tables S4 and S5) and compound CHEMBL3629609
with a pIC50 of 3.851 for the TrkA dataset (Table S6). The calculated average values of LE
also support this observation (Table 2).
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Table 2. The best (lowest binding energy), poorest (highest binding energy) and average values of
calculated AutoDock 4.2.6 binding energies (∆G, kcal/mol) and ligand efficiencies (LE). The average
values of binding energies and LEs are presented as mean ± SD.

Target pIC50
∆G, kcal/mol LE

Best Poorest Average Best Poorest Average

AChE

≥8 −16.16 −4.91 −11.88 ± 2.70 0.61 0.23 0.39 ± 0.07

6–5 −14.64 −7.58 −10.89 ± 1.76 0.46 0.21 0.36 ± 0.06

≤4 −15.59 −5.81 −9.94 ± 2.55 0.67 0.26 0.40 ± 0.06

BACE1

≥8 −8.88 −3.29 −6.65 ± 1.00 0.31 0.07 0.22 ± 0.04

6–5 −8.67 −4.50 −6.38 ± 1.09 0.40 0.08 0.21 ± 0.06

≤4 −8.60 −0.96 −5.25 ± 1.93 0.46 0.02 0.24 ± 0.12

GSK3β

≥8 −11.84 −6.74 −9.47 ± 1.14 0.51 0.20 0.39 ± 0.06

6–5 −12.29 −6.94 −10.10 ± 1.31 0.53 0.28 0.38 ± 0.06

≤4 −12.40 −7.34 −9.99 ± 1.38 0.56 0.28 0.38 ± 0.08

SERT
Central

binding site

≥8 −11.15 −5.05 −7.01 ± 1.31 0.39 0.16 0.29 ± 0.05

6–5 −10.89 −5.92 −8.35 ± 1.19 0.41 0.22 0.31 ± 0.05

≤4 −10.72 −6.00 −8.38 ± 1.50 0.42 0.25 0.31 ± 0.04

SERT
Allosteric

binding site

≥8 −12.15 −6.80 −9.25 ± 1.02 0.42 0.23 0.32 ± 0.05

6–5 −11.62 −6.75 −8.89 ± 1.25 0.48 0.22 0.31 ± 0.06

≤4 −11.71 −5.19 −8.34 ± 1.33 0.52 0.21 0.35 ± 0.07

TrkA

≥8 −8.90 −5.89 −7.50 ± 0.62 0.32 0.18 0.24 ± 0.03

6–5 −7.89 −4.85 −6.63 ± 0.75 0.29 0.10 0.22 ± 0.05

≤4 −7.92 −4.28 −6.76 ± 0.74 0.38 0.12 0.24 ± 0.04

2.2.2. AutoDock Vina 1.1.2

According to the results obtained for all targets using Vina 1.1.2, the calculated intervals
of the binding energy are almost identical for each group of compounds (Table 3). Therefore,
as in the case of AutoDock 4.2.6, the calculated binding energy can be used only for the
initial filtration of HTVS results. Only in the case of AChE and BACE1, a trend towards
better (more negative value) average calculated binding free energies can be observed.

Table 3. The best (lowest binding energy), poorest (highest binding energy) and average values of
calculated AutoDock Vina 1.1.2 binding energies (∆G, kcal/mol) and ligand efficiencies (LE). The
average values of binding energies and LEs are presented as mean ± SD.

Target pIC50
∆G, kcal/mol LE

Best Poorest Average Best Poorest Average

AChE

≥8 −12.70 −5.90 −10.46 ± 1.64 0.74 0.18 0.35 ± 0.10

6–5 −11.90 −7.50 −9.83 ± 1.16 0.45 0.19 0.33 ± 0.06

≤4 −11.30 −5.70 −8.84 ± 1.51 0.69 0.24 0.37 ± 0.09

BACE1

≥8 −11.90 −7.50 −10.06 ± 1.08 0.43 0.16 0.33 ± 0.05

6–5 −11.50 −6.10 −9.61 ± 1.04 0.47 0.19 0.32 ± 0.07

≤4 −11.50 −4.80 −8.63 ± 1.11 0.68 0.15 0.37 ± 0.15
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Table 3. Cont.

Target pIC50
∆G, kcal/mol LE

Best Poorest Average Best Poorest Average

GSK3β

≥8 −12.70 −7.50 −9.60 ± 1.16 0.51 0.25 0.39 ± 0.06

6–5 −12.10 −5.90 −9.86 ± 1.39 0.52 0.14 0.37 ± 0.07

≤4 −12.80 −6.80 −10.09 ± 1.61 0.51 0.28 0.38 ± 0.06

SERT
Central

binding site

≥8 −10.80 −6.60 −8.72 ± 0.99 0.50 0.21 0.36 ± 0.06

6–5 −10.40 −6.50 −8.88 ± 0.98 0.49 0.23 0.33 ± 0.06

≤4 −10.80 −6.30 −8.89 ± 1.22 0.44 0.25 0.33 ± 0.06

SERT
Allosteric

binding site

≥8 −10.90 −6.90 −8.90 ± 0.69 0.45 0.24 0.31 ± 0.05

6–5 −10.90 −6.60 −8.86 ± 1.13 0.47 0.22 0.31 ± 0.06

≤4 −10.20 −5.10 −8.18 ± 1.06 0.55 0.21 0.35 ± 0.08

TrkA

≥8 −11.60 −8.70 −10.08 ± 0.59 0.42 0.23 0.33 ± 0.04

6–5 −10.70 −7.80 −9.48 ± 0.63 0.42 0.19 0.31 ± 0.05

≤4 −11.90 −8.20 −9.34 ± 0.73 0.51 0.23 0.34 ± 0.06

Similar to the AutoDock 4.2.6 results, the LE values calculated using Vina 1.1.2 pre-
dicted binding energies also cannot provide a reliable ranking of compounds according to
their pIC50 range (Table 3). However, for all protein targets except the SERT allosteric site,
the best (highest) LE values were obtained for compounds with pIC50 values lower than 4
(Tables S1–S6).

2.2.3. Glide HTVS

As mentioned above, the main task of Glide HTVS docking is the fast evaluation and
exclusion of ligands whose sizes and volumes exceed the volume of the binding site of the
receptor [61]. Thus, it can be assumed that the results of Glide HTVS may strongly depend
on the size and structure of the active site of the receptor. In our case, the largest number
of automatically excluded compounds was obtained for proteins with very narrow and
hard-to-reach active sites: AChE and the central binding site of SERT, respectively. In the
case of the central binding site of SERT, 41 compounds (27% of ligands) were excluded
from the docking procedure, and the number for the allosteric site was significantly lower
(Tables S4 and S5). Such an observation may suggest that, in the development of new SERT
inhibitors, both sites should be considered. Otherwise, the primary filtering of compounds
using Glide HTVS can lead to the loss of some biologically active compounds. For AChE,
as a protein with a very narrow and specific active site, one would expect more compounds
to be excluded, but only 12% of the compounds were excluded during Glide HTVS docking.
This result can be explained by the fact that most ligands likely bind during docking
to the peripheral anionic binding subsite (PAS) of AChE, which is located close to the
protein surface and provides further binding of the ligand to the active site [62]. Likely,
the PAS plays the role of the “main” binding site during the docking procedure and, thus,
compensates for the inaccessibility of the catalytic active site. The large difference in the
number of excluded compounds for the central and allosteric sites of SERT confirms this
assumption. For the SERT allosteric site that is located close to the surface and that is more
accessible for ligand binding, the number of excluded compounds is more than ten times
less than that in the case of the central binding site. For GSK3β, a protein with a relatively
wide active center close to the protein surface, only two compounds were automatically
excluded from the docking procedure.

Further evaluation of calculated Glide HTVS binding energies and LEs demonstrated
that, for all targets, the average values of both parameters are almost identical for each
group of compounds studied (Table 4). Keeping in mind that Glide HTVS is a program
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for the rapid evaluation of ligand binding, this result is expected. This observation once
again confirms that the HTVS precision level can only be used for the reduction in the
initial library size. The observation that one compound from the AChE benchmark set gave
a positive binding energy value, even when it has experimentally significant inhibitory
activity against AChE, further supports this assumption (CHEMBL4168179 with a pIC50 of
5.087, Table S1).

Table 4. The best (lowest binding energy), poorest (highest binding energy) and average values of
calculated Glide HTVS binding energies (∆G, kcal/mol) and ligand efficiencies (LE). The average
values of binding energies and LEs are presented as mean ± SD.

Target pIC50
∆G, kcal/mol LE

Best Poorest Average Best Poorest Average

AChE

≥8 −11.11 −2.41 −7.30 ± 1.61 0.64 0.05 0.27 ± 0.11

6–5 −10.76 1.74 −7.14 ± 2.15 0.36 0.07 0.25 ± 0.07

≤4 −9.95 −2.02 −6.65 ± 1.58 0.68 0.06 0.30 ± 0.12

BACE1

≥8 −7.79 −1.56 −4.27 ± 1.33 0.27 0.05 0.14 ± 0.05

6–5 −6.67 −0.34 −3.84 ± 1.37 0.26 0.01 0.14 ± 0.06

≤4 −6.57 −1.10 −4.34 ± 1.09 0.55 0.02 0.20 ± 0.11

GSK3β

≥8 −9.67 −4.24 −7.41 ± 1.05 0.44 0.18 0.33 ± 0.07

6–5 −9.50 −4.46 −6.86 ± 1.17 0.44 0.13 0.29 ± 0.09

≤4 −8.41 −4.26 −7.04 ± 0.85 0.46 0.16 0.33 ± 0.08

SERT
Central

binding site

≥8 −7.63 −4.06 −5.92 ± 0.85 0.36 0.10 0.25 ± 0.06

6–5 −7.79 0.19 −5.89 ± 1.42 0.37 0.01 0.23 ± 0.08

≤4 −9.40 −4.98 −6.28 ± 0.80 0.35 0.13 0.24 ± 0.06

SERT
Allosteric

binding site

≥8 −10.06 −3.60 −6.02 ± 1.09 0.37 0.09 0.22 ± 0.06

6–5 −8.50 −3.12 −6.01 ± 1.36 0.46 0.07 0.22 ± 0.09

≤4 −8.79 −3.01 −5.95 ± 1.36 0.56 0.10 0.27 ± 0.10

TrkA

≥8 −10.03 −3.51 −6.09 ± 1.58 0.35 0.10 0.20 ± 0.06

6–5 −8.48 −3.71 −5.91 ± 1.29 0.33 0.11 0.20 ± 0.05

≤4 −8.04 −2.78 −5.94 ± 1.17 0.38 0.09 0.22 ± 0.06

2.2.4. Glide SP

Despite a more lenient compound binding evaluation algorithm than Glide HTVS,
Glide SP can also automatically exclude compounds from the sample pool. For AChE, the
number of automatically excluded compounds compared with the docking results obtained
by Glide HTVS remained high (18 and 9 compounds for HTVS and SP, respectively)
(Table S1), whereas for other studied target proteins, this number is significantly lower.
Obviously, the number of excluded compounds directly depends on the specificity and
complexity of the active site of the target protein. The intervals of calculated Glide SP
binding energies for each studied target protein and for each group of compounds are very
close and do not suggest of any “reliable range” for the selection of compounds with activity
in the desired concentration range (Table 5). Further evaluation of the average binding
energies was more informative and allowed us to identify the threshold binding energy for
one of the studied targets that can be used for the selection of potential “lead” and “hit”
compounds. Thus, for AChE, the use of a binding energy lower than −8.5 kcal/mol as a
reference value can likely help reduce the number of low-active or inactive compounds
in the final dataset. The average binding energy for TrkA suggests that compounds with
binding energies lower than −8.0 kcal/mol are likely to be highly active (pIC50 ≥ 8) in
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biological experiments. The average binding energies obtained for BACE1, SERT (both
binding site) and GSK3β are very similar for each group of compounds and can be used
only for the preliminary filtration of docking results (Table 5).

Table 5. The best (lowest binding energy), poorest (highest binding energy) and average values of
calculated Glide SP binding energies (∆G, kcal/mol) and ligand efficiencies (LE). The average values
of binding energies and LEs are presented as mean ± SD.

Target pIC50
∆G, kcal/mol LE

Best Poorest Average Best Poorest Average

AChE

≥8 −11.38 −5.62 −8.96 ± 1.50 0.70 0.14 0.31 ± 0.09

6–5 −10.71 −5.78 −8.72 ± 1.08 0.41 0.19 0.29 ± 0.05

≤4 −10.42 −4.62 −7.79 ± 1.38 0.61 0.18 0.33 ± 0.10

BACE1

≥8 −10.16 −3.99 −5.85 ± 1.53 0.38 0.11 0.19 ± 0.06

6–5 −7.73 −2.91 −5.07 ± 1.29 0.30 0.08 0.17 ± 0.06

≤4 −8.95 −3.32 −5.55 ± 1.33 0.62 0.10 0.24 ± 0.11

GSK3β

≥8 −9.94 −4.85 −8.16 ± 1.07 0.47 0.12 0.35 ± 0.07

6–5 −9.58 −1.92 −7.54 ±1.11 0.51 0.05 0.29 ± 0.09

≤4 −9.07 −4.54 −7.59 ± 0.88 0.46 0.13 0.30 ± 0.09

SERT
Central

binding site

≥8 −7.75 −4.81 −6.59 ± 0.69 0.39 0.13 0.27 ± 0.06

6–5 −10.09 −4.89 −6.68 ± 0.90 0.38 0.16 0.25 ± 0.06

≤4 −9.84 −5.70 −6.98 ± 1.17 0.38 0.15 0.26 ± 0.06

SERT
Allosteric

binding site

≥8 −13.00 −5.45 −7.12 ± 1.22 0.41 0.16 0.25 ± 0.06

6–5 −11.65 −4.80 −6.99 ± 1.38 0.65 0.11 0.26 ± 0.10

≤4 −11.97 −4.44 −6.86 ± 1.64 0.54 0.16 0.30 ± 0.10

TrkA

≥8 −10.67 −3.83 −8.61 ± 1.76 0.40 0.13 0.28 ± 0.07

6–5 −9.62 −4.02 −6.72 ± 1.19 0.40 0.08 0.22 ± 0.06

≤4 −9.38 −2.16 −6.73 ± 1.33 0.44 0.08 0.25 ± 0.07

The further analysis of LE values also did not identify any reliable LE value for the
selection of compounds with a given biological activity (Table 5).

2.2.5. Glide XP

As in the case of Glide HTVS and SP, during the processing of obtained Glide XP
results, we came across the fact that some compounds from the benchmark set were
automatically excluded from the sample pool. Usually, the reasons for this exclusion at this
precision level are as follows: (I) a poor fit for the ligand in the active site, and high-energy
clashes cannot be resolved in the minimization step, and (II) the ligand can be rejected
because of VdW clashes. The rejection of ligands due to VdW clashes can be avoided by
increasing the Coulomb–VdW cutoff to a large, positive value. However, in our experience,
increasing the Coulomb–VdW cutoff up to 350 kcal/mol during the docking of another
benchmark set of active compounds to the active site of AChE did not completely avoid
the automatic exclusion of compounds from the sample pool, but it helped to significantly
reduce their number compared with those for Glide HTVS and SP (data are not shown). For
other studied target proteins, the number of excluded compounds was also significantly
lower than those in the case of Glide HTVS and SP, but this improvement in results was
only due to the improved scoring function of Glide XP. The problem of the automatic
exclusion can also be resolved by Induced Fit Docking [63]; however, this approach is rarely
used in the early stages of new drug development.
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The calculated Glide XP binding energies also provide sufficient information for
the enrichment of the compound library but do not provide enough information for the
reliable ranking of compounds by their biological activity (Table 6). As in the case of
Glide HTVS and SP, the binding energies calculated using the Glide XP vary within a wide
range. Moreover, in the case of BACE1, positive binding energies were obtained for some
compounds (Table S2).

Table 6. The best (lowest binding energy), poorest (highest binding energy) and average values of
calculated Glide XP binding energies (∆G, kcal/mol) and ligand efficiencies (LE). The average values
of binding energies and LEs are presented as mean ± SD.

Target pIC50
∆G, kcal/mol LE

Best Poorest Average Best Poorest Average

AChE

≥8 −11.77 −4.68 −9.44 ± 2.06 0.02 0.70 0.31 ± 0.12

6–5 −13.10 −2.82 −8.79 ± 2.07 0.09 0.44 0.29 ± 0.08

≤4 −15.80 −4.23 −7.54 ± 2.04 0.11 0.69 0.32 ± 0.12

BACE1

≥8 −11.61 −2.65 −5.08 ± 1.75 0.07 0.43 0.16 ± 0.06

6−5 −8.11 4.20 −4.09 ± 2.39 0.02 0.36 0.15 ± 0.07

≤4 −9.85 −2.49 −5.46 ± 2.03 0.07 0.51 0.22 ± 0.08

GSK3β

≥8 −11.34 −0.73 −8.19 ± 1.57 0.02 0.46 0.34 ± 0.09

6–5 −10.72 −4.30 −7.85 ± 1.24 0.18 0.45 0.30 ± 0.08

≤4 −10.00 −6.33 −8.40 ± 0.83 0.17 0.48 0.32 ± 0.09

SERT
Central

binding site

≥8 −8.60 −2.54 −6.24 ± 1.20 0.06 0.35 0.26 ± 0.06

6–5 −8.67 −1.84 −5.68 ± 1.48 0.05 0.35 0.22 ± 0.07

≤4 −9.82 −2.83 −5.93 ± 1.41 0.07 0.38 0.23 ± 0.08

SERT
Allosteric

binding site

≥8 −13.98 −3.80 −6.67 ± 1.80 0.10 0.41 0.24 ± 0.08

6–5 −11.63 −3.15 −6.93 ± 1.89 0.10 0.58 0.25 ± 0.11

≤4 −14.38 −2.73 −6.81 ± 2.36 0.08 0.64 0.30 ± 0.13

TrkA

≥8 −11.41 −2.64 −8.46 ± 2.35 0.09 0.42 0.28 ± 0.09

6–5 −10.35 −1.88 −6.28 ± 2.03 0.04 0.38 0.21 ± 0.08

≤4 −9.39 −3.04 −6.26 ± 1.45 0.11 0.40 0.23 ± 0.07

The calculated average values of LE are also almost identical for each group of com-
pounds (Table 6). The obtained LE intervals for each target and each group of compounds
start from extremely low values, and the best LE values were obtained for compounds with
moderate or low biological activity (Tables S1–S6). The average values of LE also remain
noticeably lower than the corresponding values obtained with AutoDock 4.2.6 and Vina
1.1.2. Accordingly, when processing docking results obtained with Glide XP, using LE as a
selection criterion may cause a large number of really active compounds to be excluded.

3. Materials and Methods
3.1. Target Proteins and Compound Library
3.1.1. Protein Structure Preparation

In this work, the X-ray structures of the recombinant human AChE (PDB ID: 4EY6) [36],
human BACE1 (PDB ID: 6EQM) [39], human GSK3β (PDB ID: 1PYX) [41], ts3 human SERT
(PDB IDs: 5I6X and 5I73) [43] and human TrkA (PDB ID: 4AOJ) [45] were downloaded
from Protein Data Bank [64]. Before the molecular docking procedure, the raw crystal
structures of all studied target proteins were treated using Schrödinger Protein Preparation
Wizard [65,66].
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3.1.2. Compound Libraries

The data on the biologically active compounds against the studied target proteins
were extracted from the ChEMBL database [67]. The obtained datasets were prepared
as follows: (I) newer experimental data were preferable; (II) where possible, the same or
similar experimental protocol for activity determination was used; and (III) compounds
with diverse structures were selected. As a result, the benchmark set containing 150
compounds was constructed for each target protein. Thereafter, each benchmark set was
divided into 3 groups (50 compounds each) according to their pIC50 [M]:

- 1st group “lead” compounds—pIC50 ≥ 8 (IC50 ≤ 10 nM);
- 2nd group “hit” compounds—pIC50 = 6–5 (IC50 = 1–10 µM);
- 3rd group low-active compounds with pIC50 ≤ 4 (IC50 ≥ 100 µM) or inactive compounds.

The two-dimensional chemical structures of small-molecule ligands were prepared
and optimized before docking using the Schrödinger Maestro LigPrep procedure [68]. The
OPLS4 force field [69] was used in all ligand preparation steps. PDB files were created
from the lowest energy conformers for each ligand. The PDBQT files were generated using
Raccoon v.1.0f [55].

3.2. Molecular Docking
3.2.1. Receptor Grid Generation

The binding interfaces between the co-crystallized ligand and receptor for each target
protein were identified using the Schrödinger Glide Grid Generation procedure [30,31].
The identified coordinates of active sites were each used for docking with the molecular
docking software.

3.2.2. AutoDock 4.2.6

AutoDock 4.2.6 [28] was used for the docking of the benchmark set of compounds
to the active sites of the studied target proteins. The molecular docking procedure was
performed in batch mode using Raccoon v.1.0f [55] generated and in-house optimized
scripts. Molecular docking was carried out using the default settings. Those were defined
as follows: 100 GA runs, a population size of 150, a maximum number of evaluations of
2.5 × 106, a maximum number of generations of 2.7 × 104, a maximum number of top
individuals that automatically survive of 1 and a rate of gene mutations of 0.02.

3.2.3. AutoDock Vina 1.1.2

The binding energy of the selected compounds to the studied target proteins was
also determined using AutoDock Vina 1.1.2 [29]. The docking parameters were used in
their default values, as follows: 1CPU to use, an exhaustiveness of 8 and 9 poses to output.
AutoDock Vina 1.1.2 docking was carried out automatically in batch mode using scripts
written in-house.

3.2.4. Glide Docking

The selected compounds were also docked to the active site of each of the studied
target proteins using the Schrödinger’s Glide docking procedure [30,31]. Docking was
carried out using each of three stages of ranking accuracy (HTVS, SP and XP). The docking
parameters were used at their default values.

3.2.5. Ligand Efficiency Calculation

In this work, for all compounds, the LE was calculated as follows:

LE =
∆Gbind

Nh
(1)

where Nh denotes the number of non-hydrogen atoms in the small-molecule ligand.
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4. Conclusions

In this work, we analyzed the impact of the docking software as well as the type of
the target protein on the molecular docking results and its accuracy on an example of the
three most popular docking programs and five target proteins related to neurodegenerative
diseases. In addition, we attempted to determine a “reliable range” for binding energy and
LE which would allow for the selection of compounds with biological activity in the desired
concentration range. The obtained data suggest that the use of the same binding energy or
LE threshold for different types of target proteins, as well as for different software, limits
the efficient and successful selection of potential drug candidates. Consequently, different
threshold values are necessary for each target protein when using the binding energy or
LE as a selection criterion for potentially active compounds. It was also shown that results
and threshold values of the binding energy or LE are highly dependent on the selection
of the docking software and the type of target protein. According to our results, it can be
assumed that, in the case of target proteins with narrow and hard-to-reach active sites, such
as in the case of AChE, the selection of the search algorithm and scoring function can have
a great impact on the virtual screening results and, in some cases, can cause the exclusion
of a large number of potentially active compounds. In addition, in the SERT example, it
was demonstrated that it is necessary to take into account all active sites present in the
protein. Thus, the rational selection of docking software and selection criteria, as well as
the consideration of the features and characteristics of the target protein and the use of
several parameters simultaneously for the selection of potentially active compounds, can
help improve the efficiency of the early stage of drug development.
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the active center of BACE1 (PDB ID: 6EQM); Table S3. Calculated binding energies (∆G, kcal/mol)
and ligand efficiencies (LE) of small-molecule ligands to the active center of GSK3β (PDB ID: 1PYX);
Table S4. Calculated binding energies (∆G, kcal/mol) and ligand efficiencies (LE) of small-molecule
ligands to the central binding site of SERT (PDB ID: 5I6X); Table S5. Calculated binding energies (∆G,
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