Crop Response to Soil and Water Salinity

A special issue of Soil Systems (ISSN 2571-8789).

Deadline for manuscript submissions: 30 April 2024 | Viewed by 14031

Special Issue Editors


E-Mail Website
Guest Editor
Research Division Portici, Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Naples, Italy
Interests: soil salinity; saline water; crop production; abiotic stress; irrigation management; water use efficiency; sustainable agriculture; horticultural and fiber crops
Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Interests: desertification and rehabilitation; soil salinization; sustainable drylands agriculture; watershed management; climate change

Special Issue Information

Dear Colleagues,

The expected impacts of climate change include soil and water salinization with negative effects on crop production and the environment. Moreover, the demand for food will only grow in the coming decades, spurring the cultivation of marginal areas affected by primary or secondary salinity. In this context, though much has already been done, and a lot of knowledge on the subject has been accumulated, it is urgent to continue to improve our knowledge on plant responses to soil water and salinity stress. 

Saline water modifies soil physical properties, e.g., soil structure and total porosity. These changes modify hydraulic conductivity, thus affecting water movement and soil water retention. Soils affected by salinity undergo a reduction in total porosity with a loss of larger pores and an increase in smaller pores. The modification of the soil physical properties plays a crucial role in soil management under irrigation and in general in hydrological soil behavior (drainage, leaching). Saline water tends to modify soil water retention in such a way that saline soils tend to retain more water than not saline soils. This implies different timing and amounts of irrigation for the two soils. A suitable irrigation schedule can be designed by taking into account expected soil water content, crop sensitivity, and available irrigation water to avoid the increase of osmotic potential, i.e., salinity stress. 

Under salinity stress, plants respond with a decrease in crop production as a consequence of adverse effects on germination, growth, and reproduction. In some species, a decrease in marketable yield is balanced to some extent by a better quality of fruits. Plants activate physiological, biochemical, and molecular mechanisms under salinity stress to cope with salt stress. Some agronomic practices can mitigate salinity stress, such as through leaching, the use of salt-tolerant plants or genotypes, improved irrigation management, use of mulching to mitigate soil evaporation, and control of water osmotic effects. 

On the other hand, it is known that in saline environments, native plants may resist higher salinity and offer alternate uses or support the conservation of vegetation cover, which is particularly important in such fragile areas. Furthermore, the rhizosphere of these plants is adapted to tolerate higher levels of salinity, i.e., the microbiome might be applied as a tool to augment plant performance and growth in a stressful environment. The study of the interaction of roots with associated soil micro-organisms under salinity stress is a topic attracting increasing interest. 

In order to mitigate the impact of soil and water salinity on crop production and on the fragile environment, it is crucial to shift toward sustainable agriculture by combining the preservation of fragile ecosystems with the development of multipurpose crops, where high yield is not the primary aim. This goal can be achieved with the help of profound knowledge regarding soil–plant–micro-organism–atmosphere interactions and the use of eco-friendly agronomic practices.

This Special Issue will accept reviews and full and short research papers within a broad range of interdisciplinary research concerning the sustainability of saline lands and including irrigation management with a focus on using both fresh and poor-quality water. Potential use of alternative crops, e.g., halophytes and multifunctional crops, to better cope with saline environments and soil manipulation to mitigate the salinity impact on crop production are also topics of interest. Studies on soil-improving cropping systems in saline environments, where more aspects are considered, as well as interactions of multiple interventions on the soil–crop system are likewise topics of interest.

Dr. Anna Tedeschi
Dr. Xian Xue
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Soil Systems is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • saline soil
  • irrigation in saline environment
  • crop yield
  • salinity control
  • salt leaching
  • best practices under salinity
  • alternative crops under salinity
  • use of multipurpose crops under salinity
  • use of biostimulant under salinity

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 7245 KiB  
Article
Effects of Seed Priming on Mitigating the Negative Effects of Increased Salinity in Two Varieties of Sweet Pepper (Capsicum annuum L.)
by Erna Karalija, Ajna Lošić, Arnela Demir and Dunja Šamec
Soil Syst. 2024, 8(1), 35; https://doi.org/10.3390/soilsystems8010035 - 17 Mar 2024
Viewed by 924
Abstract
The increase in soil salinity has a negative effect on the growth and yield of plants. Mitigating the negative effects of soil salinity is therefore a difficult task and different methods are being used to overcome the negative effects of salt stress on [...] Read more.
The increase in soil salinity has a negative effect on the growth and yield of plants. Mitigating the negative effects of soil salinity is therefore a difficult task and different methods are being used to overcome the negative effects of salt stress on crop plants. One of the often-used approaches is seed priming that can increase plants’ vigor and resilience. In this paper, we tested the effects of hydropriming, proline priming, and salicylic acid priming on the mitigation of the negative effects of salt stress on two bell pepper varieties (Capsicum annuum L.): Herkules and Kurtovska kapija. Sweet bell pepper seeds were primed following desiccation to achieve the original water content, and subsequently cultivated in salt-supplemented medium. The positive effects on vigor (in the form of increased germination and seedling establishment) as well as on level of tolerance for salt stress were recorded for both cultivars. The positive effects varied between the priming treatments and pepper cultivar used. The results of germination, seedling performance, photosynthetic pigments, and osmolytes were measured for seedlings grown from unprimed and primed seeds with under 0, 25, and 50 mM of NaCl. Both cultivars demonstrated greater germination when primed with proline and salicylic acid, while the Herkules cultivar demonstrated a higher tolerance to salt when proline was used as the priming agent. Priming with salicylic acid and proline in the seed improved germination and seedling performance, which could be related to the increase in proline content in the seedlings. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

17 pages, 2610 KiB  
Article
The Effect of Sodic Water Type on the Chemical Properties of Calcareous Soil in Semi-Arid Irrigated Land
by Ayşe E. Peker, Hasan S. Öztürk and Amrakh I. Mamedov
Soil Syst. 2024, 8(1), 10; https://doi.org/10.3390/soilsystems8010010 - 12 Jan 2024
Viewed by 1266
Abstract
Irrigation of calcareous soil with saline–sodic water can modify the composition of the soil solution and exchange complexes in agricultural land of arid and semi-arid regions with low water resources. The objective of this study was to monitor (medium-term) potential changes in a [...] Read more.
Irrigation of calcareous soil with saline–sodic water can modify the composition of the soil solution and exchange complexes in agricultural land of arid and semi-arid regions with low water resources. The objective of this study was to monitor (medium-term) potential changes in a calcareous clay soil irrigated with two types of sodic waters without cropping. Irrigation water with two high sodium adsorption ratios (SAR = 20 and 40) and electrical conductivity (EC < 3 dS m−1) was prepared using NaCl and NaHCO3 salts. The sodic irrigation waters were applied (June–October) in three periods (1, 2, and 4; one period = five irrigations) to bare non-saline soil with drip irrigation during two growing seasons; no irrigation action was taken in the winter–spring rainy season (period 3). Sampling (0–30 cm) was made after each period to determine the changes in soil pH, EC, water-soluble Na+, Ca2+, Mg2+, K+, Cl, and HCO3. Relative to the control, irrigation with both sodic waters increased soil pH, EC, and water-soluble Na+ and decreased or did not change water-soluble cations (Ca2+, Mg2+). The Cl concentration increased rapidly with NaCl-type water application, but it was leached away quickly by winter–spring rains. The HCO3 concentration increased with NaHCO3-type water application, yet it leached out slowly in the rainy period. The movement of HCO3 ions in the upper soil profile (0–30 cm) was significantly slower compared to Cl ions. Dissolution of slightly soluble soil CaCO3 by irrigation increased the solution concentration of Ca2+ and its mobility, yet the kinetics of processes depended on water type and irrigation period. The released Ca2+ interacted with other cations in the soil, causing further significant positive physicochemical changes in the soil solution and exchange capacity (comparable with control soil) at the end of the irrigation period. The CaCO3 content in the soil would be a long-term guarantee of the Ca2+ resource in soils, even if the amount of water-soluble Ca2+ may decrease for the short-term period during irrigation. The results should be considered for rational irrigation management (with various water qualities) in semi-arid and arid regions. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

17 pages, 1610 KiB  
Article
Salt Stress Highlights the Relevance of Genotype × Genotype Interaction in the Nitrogen-Fixing Symbiosis between Sinorhizobium meliloti and Alfalfa
by Agnese Bellabarba, Francesca Decorosi, Camilla Fagorzi, Amina El Hadj Mimoune, Arianna Buccioni, Margherita Santoni, Gaio Cesare Pacini, Abdelkader Bekki, Khalid Azim, Majida Hafidi, Marco Mazzoncini, Alessio Mengoni, Francesco Pini and Carlo Viti
Soil Syst. 2023, 7(4), 112; https://doi.org/10.3390/soilsystems7040112 - 18 Dec 2023
Viewed by 1569
Abstract
Sustainable-forage production is globally increasing, especially in marginal areas where the edaphic conditions for plant growth are not optimal. Soil salinization influences the symbiotic interaction between alfalfa and rhizobia. The efficiency of different symbiotic pairs (Sinorhizobium meliloti—Medicago sativa) was evaluated in [...] Read more.
Sustainable-forage production is globally increasing, especially in marginal areas where the edaphic conditions for plant growth are not optimal. Soil salinization influences the symbiotic interaction between alfalfa and rhizobia. The efficiency of different symbiotic pairs (Sinorhizobium meliloti—Medicago sativa) was evaluated in relation to NaCl application (100 mM) on two different alfalfa cultivars (Marina and Etrusca) and 21 S. meliloti strains isolated in Algeria. At 100 mM NaCl, it was observed that there was a higher variability of plant dry weight compared to the control. The strains able to improve plant growth at 100 mM NaCl were different and specific for each alfalfa cultivar, highlighting that (symbiont) G × (host) G interaction is magnified under stressed (saline) conditions (E). Three strains were then identified as candidate inoculants for M. sativa cv Marina and used for an in-field experiment with induced stress (no irrigation), together with S. meliloti GR4 (a highly competitive strain). In-field experiments, showed a high variability, and a significant difference of plant biomass was observed only for those inoculated with S. meliloti GR4. Obtained results suggest that multiple traits should be considered for inoculant-strain selection, and for an efficient translation from lab to field, it requires extensive comprehension of the mechanisms driving G × G × E interaction. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

15 pages, 1131 KiB  
Article
The Effects of Brackish Irrigation on Soil Ion Accumulation and Growth of Atriplex Species
by Sarah M. Cerra, Manoj K. Shukla, Soyoung Jeon and Scott O’Meara
Soil Syst. 2023, 7(4), 84; https://doi.org/10.3390/soilsystems7040084 - 09 Oct 2023
Viewed by 1382
Abstract
Prolonged drought conditions in New Mexico have led growers to use brackish groundwater for crop irrigation. Desalination of the groundwater with reverse osmosis (RO) is possible, but the concentrated waste requires environmentally safe disposal, such as by irrigating native halophytic plants, Atriplex, [...] Read more.
Prolonged drought conditions in New Mexico have led growers to use brackish groundwater for crop irrigation. Desalination of the groundwater with reverse osmosis (RO) is possible, but the concentrated waste requires environmentally safe disposal, such as by irrigating native halophytic plants, Atriplex, which could be cultivated to feed livestock. We hypothesized that ions from the brackish irrigation would increasingly accumulate in the soil away from the roots as the wetting front expanded further from the emitter, while not affecting the aboveground growth of the plants. Atriplex species were irrigated with brackish water at two irrigation levels for three years. Soil samples were collected at the beginning, middle, and end of the study at two depths and three distances from the emitter. Electrical conductivity (EC), soil ion accumulation, and plant growth were recorded. The average EC of the soil increased with brackish water irrigation. As the ions accumulated along the wetting front of the percolating water rather than near roots, a favorable environment for root growth was provided. While sodic levels of ion accumulation were not reached in this study, aboveground growth still declined. This leads to the recommendation that RO-concentrated waste could be used to irrigate Atriplex species for livestock fodder, with further plans to irrigate with fresh water to remove accumulated ions as a potential sustainable waste management process. Additional studies are necessary to develop guidelines for Atriplex tolerance and harvesting. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

20 pages, 1925 KiB  
Article
Unravelling the Combined Use of Soil and Microbial Technologies to Optimize Cultivation of Halophyte Limonium algarvense (Plumbaginaceae) Using Saline Soils and Water
by Amaia Nogales, Salvadora Navarro-Torre, Maria Manuela Abreu, Erika S. Santos, Ana Cortinhas, Rosalba Fors, Marion Bailly, Ana Sofia Róis and Ana Delaunay Caperta
Soil Syst. 2023, 7(3), 74; https://doi.org/10.3390/soilsystems7030074 - 17 Aug 2023
Viewed by 1364
Abstract
Salt-affected soils have detrimental effects on agriculture and ecosystems. However, these soils can still be used for halophyte (salt-tolerant plants) cultivation using brackish and/or saline water. In this study, we employed soil technologies and mutualistic microorganisms as a sustainable strategy to improve the [...] Read more.
Salt-affected soils have detrimental effects on agriculture and ecosystems. However, these soils can still be used for halophyte (salt-tolerant plants) cultivation using brackish and/or saline water. In this study, we employed soil technologies and mutualistic microorganisms as a sustainable strategy to improve the growth and reproduction of the halophyte Limonium algarvense Erben’s growth and reproduction under saline conditions. A microcosm assay was conducted under controlled greenhouse conditions to cultivate L. algarvense using a saline Fluvisol (FLU) amended—or not—with a Technosol (TEC). Plants were inoculated with the arbuscular mycorrhizal fungus (AMF) Rhizoglomus irregulare and/or a consortium of plant growth-promoting bacteria (PGPB), and they were irrigated with estuarine water. Soil enzyme analysis and physicochemical characterisation of the soils, collected at the beginning and at the end of the assay, were carried out. The physiological status of non-inoculated and inoculated plants was monitored during the assay for 4 months, and AMF root colonisation was evaluated. In FLU, only plants inoculated with the AMF survived. These plants had lower number of leaves, and shoot and root dry biomass than the ones grown in the TEC by the end of the assay. In the TEC, PGPB inoculation led to higher NDVI and PRI values, and AMF inoculation promoted higher reproductive development but not pollen fertility. The findings show that the combined use of soil and microbial technologies can be successfully applied to cultivate L. algarvense, suggesting their generalized use for other Limonium species with economic interest, while contributing to the sustainable use of marginal lands. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

19 pages, 1994 KiB  
Article
Exogenous Selenium Improves Physio-Biochemical and Performance of Drought-Stressed Phaseolus vulgaris Seeded in Saline Soil
by Wael M. Semida, Taia A. Abd El-Mageed, Mohammed A. H. Gyushi, Shimaa A. Abd El-Mageed, Mostafa M. Rady, Abdelsattar Abdelkhalik, Othmane Merah, Ayman El Sabagh, Ibrahim M. El-Metwally, Mervat Sh. Sadak and Magdi T. Abdelhamid
Soil Syst. 2023, 7(3), 67; https://doi.org/10.3390/soilsystems7030067 - 20 Jul 2023
Cited by 2 | Viewed by 1201
Abstract
Water and salt stresses are among the most important global problems that limit the growth and production of several crops. The current study aims at the possibility of mitigating the effect of deficit irrigation of common bean plants growing in saline lands by [...] Read more.
Water and salt stresses are among the most important global problems that limit the growth and production of several crops. The current study aims at the possibility of mitigating the effect of deficit irrigation of common bean plants growing in saline lands by foliar spraying with selenium via the assessment of growth, productivity, physiological, and biochemical measurements. In our study, two field-based trials were conducted in 2017 and 2018 to examine the influence of three selenium (Se) concentrations (0 (Se0), 25 (Se25), and 50 mg L−1 (Se50)) on common bean plants grown under full irrigation (I100 = 100% of the crop evapotranspiration; ETc) and deficit irrigation (I80 = 80% of ETc, and I60 = 60% of ETc). Bean plants exposed to water stress led to a notable reduction in growth, yield, water productivity (WP), water status, SPAD value, and chlorophyll a fluorescence features (Fv/Fm and PI). However, foliar spraying of selenium at 25 or 50 mg L−1 on stressed bean plants attenuated the harmful effects of water stress. The findings suggest that foliage application of 25 or 50 mg L−1 selenium to common bean plants grown under I80 resulted in a higher membrane stability index, relative water content, SPAD chlorophyll index, and better efficiency of photosystem II (Fv/Fm, and PI). Water deficit at 20% increased the WP by 17%; however, supplementation of 25 or 50 mg L−1 selenium mediated further increases in WP up to 26%. Exogenous application of selenium (25 mg L−1 or 50 mg L−1) to water-stressed bean plants elevated the plant defense system component, given that it increased the free proline, ascorbic acid, and glutathione levels, as well as antioxidant enzymes (SOD, APX, GPX, and CAT). It was concluded that the application of higher levels (25 or/and 50 mg L−1) of Se improves plant water status as well as the growth and yield of common beans cultivated in saline soil. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

16 pages, 2838 KiB  
Article
Effects of Four-Week Exposure to Salt Treatments on Germination and Growth of Two Amaranthus Species
by Manel Bellache, Leila Allal Benfekih, Natalia Torres-Pagan, Ricardo Mir, Mercedes Verdeguer, Oscar Vicente and Monica Boscaiu
Soil Syst. 2022, 6(3), 57; https://doi.org/10.3390/soilsystems6030057 - 21 Jun 2022
Cited by 7 | Viewed by 2385
Abstract
Soil salinity represents one of the most restrictive environmental factors for agriculture worldwide. In the present study, the salt tolerance of two weeds of the genus Amaranthus, A. albus and A. hybridus, the latter cultivated as green vegetable in Africa, were [...] Read more.
Soil salinity represents one of the most restrictive environmental factors for agriculture worldwide. In the present study, the salt tolerance of two weeds of the genus Amaranthus, A. albus and A. hybridus, the latter cultivated as green vegetable in Africa, were analysed. Both species showed a remarkable salt tolerance phenotype during germination and vegetative growth. To evaluate the percentage and rate of germination, seeds were germinated in Petri dishes in a germination chamber under increasing concentrations up to 300 mM NaCl. Higher concentrations of salt ranging from 150 to 600 mM NaCl were applied for one month to plants grown in individual pots in the greenhouse. All seeds of A. albus germinated in the control and almost half of the seeds under 200 mM NaCl, but only 4% of the seeds under 250 mM NaCl. In A. hybridus, germination was considerably lower in all treatments and was completely prevented at 250 mM NaCl. The plant growth of both species was severely affected by high salt concentrations of 450 and 600 mM NaCl, but not under lower concentrations. At this stage of the biological cycle, A. hybridus showed a higher salt tolerance, as indicated by the smaller reduction in its growth parameters. The dry weight of leaves and roots of plants receiving 600 mM NaCl decreased in comparison to control: less than 60% in A. hybridus but more than 70% in A. albus. The salt tolerance of the two species contributes to their invasive potential, but on the other hand represents a useful trait when considering them as potential crops for the future. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 8504 KiB  
Review
Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management
by Hassan El-Ramady, József Prokisch, Hani Mansour, Yousry A. Bayoumi, Tarek A. Shalaby, Szilvia Veres and Eric C. Brevik
Soil Syst. 2024, 8(1), 11; https://doi.org/10.3390/soilsystems8010011 - 15 Jan 2024
Cited by 2 | Viewed by 2284
Abstract
Soil salinity is a serious problem facing many countries globally, especially those with semi-arid and arid climates. Soil salinity can have negative influences on soil microbial activity as well as many chemical and physical soil processes, all of which are crucial for soil [...] Read more.
Soil salinity is a serious problem facing many countries globally, especially those with semi-arid and arid climates. Soil salinity can have negative influences on soil microbial activity as well as many chemical and physical soil processes, all of which are crucial for soil health, fertility, and productivity. Soil salinity can negatively affect physiological, biochemical, and genetic attributes of cultivated plants as well. Plants have a wide variety of responses to salinity stress and are classified as sensitive (e.g., carrot and strawberry), moderately sensitive (grapevine), moderately tolerant (wheat) and tolerant (barley and date palm) to soil salinity depending on the salt content required to cause crop production problems. Salinity mitigation represents a critical global agricultural issue. This review highlights the properties and classification of salt-affected soils, plant damage from osmotic stress due to soil salinity, possible approaches for soil salinity mitigation (i.e., applied nutrients, microbial inoculations, organic amendments, physio-chemical approaches, biological approaches, and nano-management), and research gaps that are important for the future of food security. The strong relationship between soil salinity and different soil subdisciplines (mainly, soil biogeochemistry, soil microbiology, soil fertility and plant nutrition) are also discussed. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

Back to TopTop