Advanced Nanopharmaceutics for Anticancer Therapy

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Targeting and Design".

Deadline for manuscript submissions: 15 July 2024 | Viewed by 3079

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, 120 00 Prague 2, Czech Republic
Interests: cancer immunotherapy; drug delivery; gene therapy; cancer immunology

E-Mail Website
Guest Editor
Department of Biomedical Polymers, Institute of Macromolecular Chemistry CAS , Heyrovského nám. 2, 162 00 Prague 6, Czech Republic
Interests: nanotherapeutics; drug delivery; cancer; tumor

Special Issue Information

Dear Colleagues,

Over several decades, nanomedicines have achieved great advances in medical applications, especially in cancer therapy. Nano-sized drug delivery systems based on polymers, proteins, and lipids provide a flexible platform for binding therapeutic and/or diagnostic agents and delivering them to the target tissue. The smart design of these nanocarriers improves the delivery efficiency and site-specific controlled release of therapeutic agents. Recently, many studies have focused on (besides chemotherapy delivery) delivering cancer vaccines and immunotherapy and/or utilizing nanocarriers for diagnostic purposes such as delivering contrast agents for SPECT, PET, and MRI imaging or developing theranostic probes for image-guided resection.

Authors are kindly invited to submit original papers, reviews, and communications regarding recent advances in nanocarriers designed for anticancer drug delivery applications, diagnosis, their characterization, as well as in vitro, in vivo, clinical, or in silico testing to be published in this Special Issue of Pharmaceutics.

Dr. David Větvička
Dr. Martin Studenovský
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials 
  • drug delivery systems 
  • cancer therapy 
  • polymer carriers 
  • liposomes 
  • theranostics 
  • imaging 
  • tumor targeting 
  • biomaterials

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3591 KiB  
Article
High Manganese Content of Lipid NanoMn (LNM) by Microfluidic Technology for Enhancing Anti-Tumor Immunity
by Jiawei Sun, Jingjing Gong, Lidong Gong, Chuanda Zhu, Longhao Li-Yang, Jingya Wang, Yuanyuan Yang, Shiming Zhang, Silu Liu, Ji-Jun Fu and Pengcheng Xu
Pharmaceutics 2024, 16(4), 556; https://doi.org/10.3390/pharmaceutics16040556 - 19 Apr 2024
Viewed by 240
Abstract
Immunotherapy is a clinically effective method for treating tumors. Manganese can activate the cGAS-STING signaling pathway and induce an anti-tumor immune response. However, its efficacy is hindered by non-specific distribution and low uptake rates. In this study, we employed microfluidic technology to design [...] Read more.
Immunotherapy is a clinically effective method for treating tumors. Manganese can activate the cGAS-STING signaling pathway and induce an anti-tumor immune response. However, its efficacy is hindered by non-specific distribution and low uptake rates. In this study, we employed microfluidic technology to design and develop an innovative preparation process, resulting in the creation of a novel manganese lipid nanoparticle (LNM). The lipid manganese nanoparticle produced in this process boasts a high manganese payload, excellent stability, the capacity for large-scale production, and high batch repeatability. LNM has effectively demonstrated the ability to activate the cGAS-STING signaling pathway, induce the production of pro-inflammatory cytokines, and inhibit tumor development. Notably, LNM does not require combination chemotherapy drugs or other immune activators. Therefore, LNM presents a safe, straightforward, and efficient strategy for anti-tumor immune activation, with the potential for scalable production. Full article
(This article belongs to the Special Issue Advanced Nanopharmaceutics for Anticancer Therapy)
Show Figures

Graphical abstract

18 pages, 3311 KiB  
Article
Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo
by Oleksandr Shapoval, David Větvička, Vitalii Patsula, Hana Engstová, Olga Kočková, Magdalena Konefał, Martina Kabešová and Daniel Horák
Pharmaceutics 2023, 15(12), 2694; https://doi.org/10.3390/pharmaceutics15122694 - 28 Nov 2023
Cited by 1 | Viewed by 922
Abstract
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case [...] Read more.
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer. Full article
(This article belongs to the Special Issue Advanced Nanopharmaceutics for Anticancer Therapy)
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 5386 KiB  
Review
Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy
by Xiqian Zhuo, Zhongshan Liu, Reyida Aishajiang, Tiejun Wang and Duo Yu
Pharmaceutics 2023, 15(9), 2293; https://doi.org/10.3390/pharmaceutics15092293 - 07 Sep 2023
Cited by 2 | Viewed by 1464
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into [...] Read more.
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications. Full article
(This article belongs to the Special Issue Advanced Nanopharmaceutics for Anticancer Therapy)
Show Figures

Figure 1

Back to TopTop