Pharmaceutical Applications of Polymers for Drug Discovery and Delivery

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmaceutical Technology".

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 5516

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
Interests: nanomaterials; colon cancer; drug delivery; polymeric materials; mucoadhesion; thiolation; pharmaceutical drug development; controlled drug delivery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymers have numerous medical and pharmaceutical applications. The development of pharmaceutical dosage forms invites the potential for many functions of polymers. Significant research has been devoted to polymer-based drug delivery system (DDS) in recent years, and a number of promising applications for polymer-based delivery systems have reached the clinical stage. Despite these remarkable advances, more foundational and applied research is required to control the characteristics and performance of polymer-based DDS with precision. The promising applications of polymers include controlled and targeted drug release, the improvement of drug stability and the development of DDS, i.e., nanoparticles, microparticles, and hydrogels and nanogels. In addition to their more common uses as emulsifiers, suspending agents, binding agents, and flocculating agents, polymers are versatile enough to serve as adhesives, packaging materials, and coating materials. All of the above, and other potential pharmaceutical applications of polymers for drug discovery and delivery, are the focus of this Special Issue, which invites both reviews and original research articles on the subject.

Dr. Sobia Noreen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers
  • drug discovery
  • drug delivery
  • polymeric nano- and microparticles
  • pharmaceutical applications
  • controlled and targeted drug release

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3473 KiB  
Article
Statistically Optimized Polymeric Buccal Films of Eletriptan Hydrobromide and Itopride Hydrochloride: An In Vivo Pharmacokinetic Study
by Awaji Y. Safhi, Waqar Siddique, Muhammad Zaman, Rai Muhammad Sarfraz, Muhammad Shafeeq Ur Rahman, Asif Mahmood, Ahmad Salawi, Fahad Y. Sabei, Abdullah Alsalhi and Khalid Zoghebi
Pharmaceuticals 2023, 16(11), 1551; https://doi.org/10.3390/ph16111551 - 02 Nov 2023
Cited by 1 | Viewed by 936
Abstract
A migraine is a condition of severe headaches, causing a disturbance in the daily life of the patient. The current studies were designed to develop immediate-release polymeric buccal films of Eletriptan Hydrobromide (EHBR) and Itopride Hydrochloride (ITHC) to improve their bioavailability and, hence, [...] Read more.
A migraine is a condition of severe headaches, causing a disturbance in the daily life of the patient. The current studies were designed to develop immediate-release polymeric buccal films of Eletriptan Hydrobromide (EHBR) and Itopride Hydrochloride (ITHC) to improve their bioavailability and, hence, improve compliance with the patients of migraines and its associated symptoms. The prepared films were evaluated for various in vitro parameters, including surface morphology, mechanical strength, disintegration test (DT), total dissolving time (TDT), drug release and drug permeation, etc., and in vivo pharmacokinetic parameters, such as area under curve (AUC), mean residence time (MRT), half-life (t1/2), time to reach maximum concentration (Tmax), and time to reach maximum concentration (Cmax). The outcomes have indicated the successful preparation of the films, as SEM has confirmed the smooth surface and uniform distribution of drugs throughout the polymer matrix. The films were found to be mechanically stable as indicated by folding endurance studies. Furthermore, the optimized formulations showed a DT of 13 ± 1 s and TDT of 42.6 ± 0.75 s, indicating prompt disintegration as well as the dissolution of the films. Albino rabbits were used for in vivo pharmacokinetics, and the outcomes were evident of improved pharmacokinetics. The drug was found to rapidly permeate across the buccal mucosa, leading to increased bioavailability of the drug: Cmax of 130 and 119 ng/mL of ITHC and EHBR, respectively, as compared to 96 (ITHC) and 90 ng/mL (EHBR) of oral solution. The conclusion can be drawn that possible reasons for the enhanced bioavailability could be the increased surface area in the form of buccal films, its rapid disintegration, and faster dissolution, which led toward the rapid absorption of the drug into the blood stream. Full article
Show Figures

Figure 1

13 pages, 2677 KiB  
Article
Preliminary Assessment of Polysaccharide-Based Emulgels Containing Delta-Aminolevulinic Acid for Oral Lichen planus Treatment
by Emilia Szymańska, Joanna Potaś, Mateusz Maciejczyk, Magdalena Ewa Sulewska, Małgorzata Pietruska, Anna Zalewska, Aleksandra Pietruska and Katarzyna Winnicka
Pharmaceuticals 2023, 16(11), 1534; https://doi.org/10.3390/ph16111534 - 30 Oct 2023
Viewed by 798
Abstract
Photodynamic therapy using delta-aminolevulinic acid is considered a promising option in the treatment of oral lichen planus. In the present work, three emulgel compositions prepared from natural polysaccharide gums, tragacanth, xanthan and gellan, were preliminarily tested for oromucosal delivery of delta-aminolevulinic acid. Apart [...] Read more.
Photodynamic therapy using delta-aminolevulinic acid is considered a promising option in the treatment of oral lichen planus. In the present work, three emulgel compositions prepared from natural polysaccharide gums, tragacanth, xanthan and gellan, were preliminarily tested for oromucosal delivery of delta-aminolevulinic acid. Apart from cytotoxicity studies in two gingival cell lines, the precise goal was to investigate whether the presence of the drug altered the rheological and mucoadhesive behavior of applied gelling agents and to examine how dilution with saliva fluid influenced the retention of the designed emulgels by oromucosal tissue. Ex vivo mucoadhesive studies revealed that a combination of xanthan and gellan gum enhanced carrier retention by buccal tissue even upon dilution with the saliva. In turn, the incorporation of delta-aminolevulinic acid favored interactions with mucosal tissue, particularly formulations comprised of tragacanth. The designed preparations had no significant impact on the cell viability after a 24 h incubation in the tested concentration range. Cytotoxicity studies demonstrated that tragacanth-based and gellan/xanthan-based emulgels might exert a protective effect on the metabolic activity of human gingival fibroblasts and keratinocytes. Overall, the presented data show the potential of designed emulgels as oromucosal platforms for delta-aminolevulinic acid delivery. Full article
Show Figures

Figure 1

15 pages, 4846 KiB  
Article
Hot Melt Extrusion for Improving the Physicochemical Properties of Polydatin Derived from Polygoni cuspidati Extract; A Solution Recommended for Buccal Applications
by Magdalena Paczkowska-Walendowska, Lidia Tajber, Andrzej Miklaszewski and Judyta Cielecka-Piontek
Pharmaceuticals 2023, 16(9), 1226; https://doi.org/10.3390/ph16091226 - 30 Aug 2023
Viewed by 1037
Abstract
Three different types of solid dispersions based on polyvinyl polymers and related copolymers (Kollidon® VA64, Soluplus® and Kollicoat IR®) comprising polydatin-rich Polygoni cuspidati extract were prepared by hot melt extrusion. The systems were characterized using X-ray powder diffraction, infrared [...] Read more.
Three different types of solid dispersions based on polyvinyl polymers and related copolymers (Kollidon® VA64, Soluplus® and Kollicoat IR®) comprising polydatin-rich Polygoni cuspidati extract were prepared by hot melt extrusion. The systems were characterized using X-ray powder diffraction, infrared spectroscopy as well as by polydatin release and in vitro permeability. Mucoadhesive tablets were prepared from the extrudates based on Kollidon® VA64 and Soluplus® to obtain a suitable pharmaceutical form, where (hydroxypropyl)methyl cellulose was added as a mucoadhesive agent. The tablets were evaluated in terms of the kinetics of polydatin release as well as their mucoadhesive properties. The best tabletability properties, polydatin release profile and adequate mucoadhesive properties were obtained by the formulation containing the Kollidon® VA64-based extrudate, which makes it an excellent prototype for enhancing the release of poorly water-soluble compounds. Full article
Show Figures

Figure 1

23 pages, 7590 KiB  
Article
Fabrication and Characterization of Celecoxib-Loaded Chitosan/Guar Gum-Based Hydrogel Beads
by Rukhsana Batool, Jahanzeb Mudassir, Mahtab Ahmad Khan, Saman Zafar, Sadia Jafar Rana, Nasir Abbas, Amjad Hussain, Muhammad Sohail Arshad and Sajjad Muhammad
Pharmaceuticals 2023, 16(4), 554; https://doi.org/10.3390/ph16040554 - 06 Apr 2023
Cited by 2 | Viewed by 2204
Abstract
The aim of this study was to fabricate celecoxib-loaded chitosan/guar gum (CS/GG) single (SC) and dual (DC) crosslinked hydrogel beads using the ionotropic gelation approach. The prepared formulations were evaluated for entrapment efficiency (EE%), loading efficiency (LE%), particle size and swelling studies. The [...] Read more.
The aim of this study was to fabricate celecoxib-loaded chitosan/guar gum (CS/GG) single (SC) and dual (DC) crosslinked hydrogel beads using the ionotropic gelation approach. The prepared formulations were evaluated for entrapment efficiency (EE%), loading efficiency (LE%), particle size and swelling studies. The performance efficiency was assessed by in vitro drug release, ex-vivo mucoadhesion, permeability, ex-in vivo swelling and in vivo anti-inflammatory studies. The EE% was found to be ~55% and ~44% for SC5 and DC5 beads, respectively. The LE% was ~11% and ~7% for SC5 and DC5 beads, respectively. The beads showed a matrix-like network with thick fibers. The particle size of beads ranged from ~2.74 to 1.91 mm. About 74% and 24% celecoxib was released from SC and DC hydrogel beads, respectively, within 24 h. The SC formulation showed higher %swelling and permeability than the DC counterpart, while the %mucoadhesion was relatively higher for DC beads. During the in vivo study, a significant decrease in the inflammation of the rat paw and inflammatory markers including C-reactive proteins (CRP) and interleukin-6 (IL-6) was observed following treatment with the prepared hydrogel beads; however, the SC formulation showed better therapeutic efficiency. In conclusion, celecoxib-loaded crosslinked CS/GG hydrogel beads can provide sustained drug release and act as potential candidates for managing inflammatory conditions. Full article
Show Figures

Graphical abstract

Back to TopTop