Hybrid Nanomaterials: Applications in Energy, Environment and Biomedicine

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanocomposite Materials".

Deadline for manuscript submissions: closed (30 October 2023) | Viewed by 5856

Special Issue Editors


E-Mail Website
Guest Editor
Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Interests: environmental science; wastewater purification; material synthesis and characterization; photocatalysis; adsorption; organic and inorganic pollutants; kinetics; thermodynamic; isotherms
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Interests: industrial waste treatment; nanotechnology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Center of Nanotechnology (CNT), King Abdulaziz University, Jeddah, Saudi Arabia
Interests: sensing and energy storage materials

E-Mail Website
Guest Editor
Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah, Saudi Arabia
Interests: microbial and pharmaceutical sciences

Special Issue Information

Dear Colleagues,

In the past few decades, the field of nanotechnology has grown extensively, and nanomaterial-based products are gaining traction. Nanomaterials have wide-ranging and diverse properties and applications, most of which are associated with size, shape, functionality, structure, etc. Nowadays, most research in this area is focused on synthesizing hybrid nanomaterials to enhance the efficiency of the parent nanomaterials. Therefore, hybrid nanomaterials properties such as size, shape, composition, structure and charge, etc., have been investigated and used in air, water, and soil purification, energy-related inventions, diagnostic, drug delivery, and other biomedical applications. The present Special Issue will focus on advancements in the application of hybrid nanomaterials in energy, environmental, and biomedical applications. We invite researchers from academia and industry to contribute original research articles and review articles covering novel approaches in the development of nanohybrids and their applications in the environment, energy, and biomedical fields.

Dr. Rajeev Kumar
Prof. Dr. M. A. Barakat
Dr. Mohammad Omaish Ansari
Dr. Varish Ahmad
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hybrid nanomaterials
  • air, water, soil remediation
  • biomedical applications
  • energy applications
  • environment applications

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 4410 KiB  
Article
Series Solutions of Three-Dimensional Magnetohydrodynamic Hybrid Nanofluid Flow and Heat Transfer
by Xiangcheng You and Yanbin Wang
Nanomaterials 2024, 14(3), 316; https://doi.org/10.3390/nano14030316 - 04 Feb 2024
Viewed by 768
Abstract
Hybrid nanofluids have many real-world applications. Research has shown that mixed nanofluids facilitate heat transfer better than nanofluids with one type of nanoparticle. New applications for this type of material include microfluidics, dynamic sealing, and heat dissipation. In this study, we began by [...] Read more.
Hybrid nanofluids have many real-world applications. Research has shown that mixed nanofluids facilitate heat transfer better than nanofluids with one type of nanoparticle. New applications for this type of material include microfluidics, dynamic sealing, and heat dissipation. In this study, we began by placing copper into H2O to prepare a Cu-H2O nanofluid. Next, Cu-H2O was combined with Al2O3 to create a Cu-Al2O3-H2O hybrid nanofluid. In this article, we present an analytical study of the estimated flows and heat transfer of incompressible three-dimensional magnetohydrodynamic hybrid nanofluids in the boundary layer. The application of similarity transformations converts the interconnected governing partial differential equations of the problem into a set of ordinary differential equations. Utilizing the homotopy analysis method (HAM), a uniformly effective series solution was obtained for the entire spatial region of 0 < η < ∞. The errors in the HAM calculation are smaller than 1 × 10−9 when compared to the results from the references. The volume fractions of the hybrid nanofluid and magnetic fields have significant impacts on the velocity and temperature profiles. The appearance of magnetic fields can alter the properties of hybrid nanofluids, thereby altering the local reduced friction coefficient and Nusselt numbers. As the volume fractions of nanoparticles increase, the effective viscosity of the hybrid nanofluid typically increases, resulting in an increase in the local skin friction coefficient. The increased interaction between the nanoparticles in the hybrid nanofluid leads to a decrease in the Nusselt number distribution. Full article
Show Figures

Figure 1

17 pages, 4333 KiB  
Article
Integrated Ozonation Ni-NiO/Carbon/g-C3N4 Nanocomposite-Mediated Catalytic Decomposition of Organic Contaminants in Wastewater under Visible Light
by Abdullah Y. Alhato, Rajeev Kumar and Mohammad A. Barakat
Nanomaterials 2024, 14(2), 190; https://doi.org/10.3390/nano14020190 - 14 Jan 2024
Cited by 2 | Viewed by 855
Abstract
Developing a hybrid process for wastewater purification is of utmost importance to make conventional methods more efficient and faster. Herein, an effective visible light-active nickel–nickel oxide/carbon/graphitic carbon nitride (Ni-NiO/C/g-C3N4)-based nanocatalyst was developed. A hybrid process based on ozonation and [...] Read more.
Developing a hybrid process for wastewater purification is of utmost importance to make conventional methods more efficient and faster. Herein, an effective visible light-active nickel–nickel oxide/carbon/graphitic carbon nitride (Ni-NiO/C/g-C3N4)-based nanocatalyst was developed. A hybrid process based on ozonation and Ni-NiO/C/g-C3N4 visible light photocatalysis was applied to decolourize the Congo red (CR), Alizarin Red S (ARS), and real dairy industry wastewater. The synthesized catalyst was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Χ-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectrophotometry (UV-Vis DRS). The factors affecting the catalytic process were evaluated, including contact time, solution pH, initial dye concentration, etc. The degradation rate of CR and ARS was compared between the photocatalysis, ozonation, and integrated photocatalytic ozonation (PC/O3) methods. The results showed 100% degradation of CR and ARS within 5 min and 40 min, respectively, by integrated PC/O3. The reusability of the modified catalyst was evaluated, and four successive regenerations were achieved. The modified Ni-NiO/C/g-C3N4 composite could be considered an effective, fast, and reusable catalyst in an integrated PC/O3 process for the complete decolourization of wastewater. Full article
Show Figures

Figure 1

16 pages, 8684 KiB  
Article
Silver Anchored Polyaniline@Molybdenum Disulfide Nanocomposite (Ag/Pani@MoS2) for Highly Efficient Ammonia and Methanol Sensing under Ambient Conditions: A Mechanistic Approach
by Bandar A. Al-Mur and Mohammad Omaish Ansari
Nanomaterials 2023, 13(5), 828; https://doi.org/10.3390/nano13050828 - 23 Feb 2023
Viewed by 1425
Abstract
We report the synthesis of silver anchored and para toluene sulfonic acid (pTSA) doped polyaniline/molybdenum disulfide nanocomposite (pTSA/Ag-Pani@MoS2) for highly reproducible room temperature detection of ammonia and methanol. Pani@MoS2 was synthesized by in situ polymerization of [...] Read more.
We report the synthesis of silver anchored and para toluene sulfonic acid (pTSA) doped polyaniline/molybdenum disulfide nanocomposite (pTSA/Ag-Pani@MoS2) for highly reproducible room temperature detection of ammonia and methanol. Pani@MoS2 was synthesized by in situ polymerization of aniline in the presence of MoS2 nanosheets. The chemical reduction of AgNO3 in the presence of Pani@MoS2 led to the anchoring of Ag to Pani@MoS2 and finally doping with pTSA produced highly conductive pTSA/Ag-Pani@MoS2. Morphological analysis showed Pani-coated MoS2 along with the observation of Ag spheres and tubes well anchored to the surface. Structural characterization by X-ray diffraction and X-ray photon spectroscopy showed peaks corresponding to Pani, MoS2, and Ag. The DC electrical conductivity of annealed Pani was 11.2 and it increased to 14.4 in Pani@MoS2 and finally to 16.1 S/cm with the loading of Ag. The high conductivity of ternary pTSA/Ag-Pani@MoS2 is due to Pani and MoS2 π–π* interactions, conductive Ag, as well as the anionic dopant. The pTSA/Ag-Pani@MoS2 also showed better cyclic and isothermal electrical conductivity retention than Pani and Pani@MoS2, owing to the higher conductivity and stability of its constituents. The ammonia and methanol sensing response of pTSA/Ag-Pani@MoS2 showed better sensitivity and reproducibility than Pani@MoS2 owing to the higher conductivity and surface area of the former. Finally, a sensing mechanism involving chemisorption/desorption and electrical compensation is proposed. Full article
Show Figures

Figure 1

17 pages, 2915 KiB  
Article
Therapeutic Applications of Biogenic Silver Nanomaterial Synthesized from the Paper Flower of Bougainvillea glabra (Miami, Pink)
by Mohammad Oves, Mohd Ahmar Rauf and Huda A. Qari
Nanomaterials 2023, 13(3), 615; https://doi.org/10.3390/nano13030615 - 03 Feb 2023
Cited by 11 | Viewed by 2288
Abstract
In this research, Bougainvillea glabra paper flower extract was used to quickly synthesize biogenic silver nanoparticles (BAgNPs) utilizing green chemistry. Using the flower extract as a biological reducing agent, silver nanoparticles were generated by the conversion of Ag+ cations to Ag0 [...] Read more.
In this research, Bougainvillea glabra paper flower extract was used to quickly synthesize biogenic silver nanoparticles (BAgNPs) utilizing green chemistry. Using the flower extract as a biological reducing agent, silver nanoparticles were generated by the conversion of Ag+ cations to Ag0 ions. Data patterns obtained from physical techniques for characterizing BAgNPs, employing UV-visible, scattering electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), suggested that the nanoparticles have a spherical to oval form with size ranging from 10 to 50 nm. Spectroscopy and microscopic analysis were used to learn more about the antibacterial properties of the biologically produced BAgNPs from Bougainvillea glabra. Further, the potential mechanism of action of nanoparticles was investigated by studying their interactions in vitro with several bacterial strains and mammalian cancer cell systems. Finally, we can conclude that BAgNPs can be functionalized to dramatically inhibit bacterial growth and the growth of cancer cells in culture conditions, suggesting that biologically produced nanomaterials will provide new opportunities for a wide range of biomedical applications in the near future. Full article
Show Figures

Graphical abstract

Back to TopTop