Nanomaterials for Ion Battery Applications II

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: 20 July 2024 | Viewed by 3656

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical and Biological Engineering, Gachon University, Seongnam, Republic of Korea
Interests: nanoparticles; quantum dots; polymers; carbon-based materials; metal oxide materials; transition metal chalcogenides; 2D materials; nanostructures; alloys; hybrid materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Rechargeable batteries, ranging from small portable devices to large energy storage systems, have emerged as indispensable electrochemical devices in our daily lives. The three primary components of rechargeable cells are the positive and negative electrodes and the electrolytes. Nanotechnologies are positioned to play a critical role in significantly improving battery performance. The rational design of various nanomaterials has been a major research theme in the process of developing high-performance batteries. Although nanomaterials may face a higher risk of unwanted secondary reactions than bulk materials, a suitable material design can overcome this issue while providing beneficial opportunities. For example, suitably designed nanomaterials may provide a significant increase in the effective surface area of electrodes, thereby increasing the energy storage. Moreover, the judicious design of nanoarchitecture can boost the diffusion of ions into the electrodes, thus enhancing the electrochemical reaction kinetics.

Among various types of rechargeable batteries, Li-ion batteries are presently regarded as market-leading technologies thanks to their many beneficial features. However, Li-ion batteries still have limitations to be overcome; thus, there is ongoing research into several different types of potential next-generation batteries.

This Special Issue of Nanomaterials will cover the advancements in recent nanotechnologies and nanomaterials for various ion batteries (Li-ion batteries, sodium-ion batteries, Li–sulfur batteries, multivalent ion batteries, all-solid-state batteries, aqueous batteries, etc.). The development of new functional nanomaterials, as important components in these batteries, is the central topic to be discussed in this Special Issue.

Dr. Jaehyun Hur
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanostructured cathodes or anodes
  • functional nanomaterials
  • synthesis of electrode materials
  • hybrid nanomaterials
  • advanced electrolytes
  • characterizations

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 3429 KiB  
Article
Fine-Tuning Intrinsic and Doped Hydrogenated Amorphous Silicon Thin-Film Anodes Deposited by PECVD to Enhance Capacity and Stability in Lithium-Ion Batteries
by Nieves González, Tomás García, Carmen Morant and Rocío Barrio
Nanomaterials 2024, 14(2), 204; https://doi.org/10.3390/nano14020204 - 17 Jan 2024
Viewed by 893
Abstract
Silicon is a promising alternative to graphite as an anode material in lithium-ion batteries, thanks to its high theoretical lithium storage capacity. Despite these high expectations, silicon anodes still face significant challenges, such as premature battery failure caused by huge volume changes during [...] Read more.
Silicon is a promising alternative to graphite as an anode material in lithium-ion batteries, thanks to its high theoretical lithium storage capacity. Despite these high expectations, silicon anodes still face significant challenges, such as premature battery failure caused by huge volume changes during charge–discharge processes. To solve this drawback, using amorphous silicon as a thin film offers several advantages: its amorphous nature allows for better stress mitigation and it can be directly grown on current collectors for material savings and improved Li-ion diffusion. Furthermore, its conductivity is easily increased through doping during its growth. In this work, we focused on a comprehensive study of the influence of both electrical and structural properties of intrinsic and doped hydrogenated amorphous silicon (aSi:H) thin-film anodes on the specific capacity and stability of lithium-ion batteries. This study allows us to establish that hydrogen distribution in the aSi:H material plays a pivotal role in enhancing battery capacity and longevity, possibly masking the significance of the conductivity in the case of doped electrodes. Our findings show that we were able to achieve high initial specific capacities (3070 mAhg-1 at the 10th cycle), which can be retained at values higher than those of graphite for a significant number of cycles (>120 cycles), depending on the structural properties of the aSi:H films. To our knowledge, this is the first comprehensive study of the influence of these properties of thin films with different doping levels and hydrogen distributions on their optimization and use as anodes in lithium-ion batteries. Full article
(This article belongs to the Special Issue Nanomaterials for Ion Battery Applications II)
Show Figures

Figure 1

12 pages, 2306 KiB  
Article
Conversion of Natural Biowaste into Energy Storage Materials and Estimation of Discharge Capacity through Transfer Learning in Li-Ion Batteries
by Murugan Nanthagopal, Devanadane Mouraliraman, Yu-Ri Han, Chang Won Ho, Josue Obregon, Jae-Yoon Jung and Chang Woo Lee
Nanomaterials 2023, 13(22), 2963; https://doi.org/10.3390/nano13222963 - 16 Nov 2023
Viewed by 841
Abstract
To simultaneously reduce the cost of environmental treatment of discarded food waste and the cost of energy storage materials, research on biowaste conversion into energy materials is ongoing. This work employs a solid-state thermally assisted synthesis method, transforming natural eggshell membranes (NEM) into [...] Read more.
To simultaneously reduce the cost of environmental treatment of discarded food waste and the cost of energy storage materials, research on biowaste conversion into energy materials is ongoing. This work employs a solid-state thermally assisted synthesis method, transforming natural eggshell membranes (NEM) into nitrogen-doped carbon. The resulting NEM-coated LFP (NEM@LFP) exhibits enhanced electrical and ionic conductivity that can promote the mobility of electrons and Li-ions on the surface of LFP. To identify the optimal synthesis temperature, the synthesis temperature is set to 600, 700, and 800 °C. The NEM@LFP synthesized at 700 °C (NEM 700@LFP) contains the most pyrrolic nitrogen and has the highest ionic and electrical conductivity. When compared to bare LFP, the specific discharge capacity of the material is increased by approximately 16.6% at a current rate of 0.1 C for 50 cycles. In addition, we introduce innovative data-driven experiments to observe trends and estimate the discharge capacity under various temperatures and cycles. These data-driven results corroborate and support our experimental analysis, highlighting the accuracy of our approach. Our work not only contributes to reducing environmental waste but also advances the development of efficient and eco-friendly energy storage materials. Full article
(This article belongs to the Special Issue Nanomaterials for Ion Battery Applications II)
Show Figures

Figure 1

14 pages, 4731 KiB  
Article
Superb Li-Ion Storage of Sn-Based Anode Assisted by Conductive Hybrid Buffering Matrix
by Jinsil Shin, Sung-Hoon Park and Jaehyun Hur
Nanomaterials 2023, 13(20), 2757; https://doi.org/10.3390/nano13202757 - 13 Oct 2023
Viewed by 704
Abstract
Although Sn has been intensively studied as one of the most promising anode materials to replace commercialized graphite, its cycling and rate performances are still unsatisfactory owing to the insufficient control of its large volume change during cycling and poor electrochemical kinetics. Herein, [...] Read more.
Although Sn has been intensively studied as one of the most promising anode materials to replace commercialized graphite, its cycling and rate performances are still unsatisfactory owing to the insufficient control of its large volume change during cycling and poor electrochemical kinetics. Herein, we propose a Sn-TiO2-C ternary composite as a promising anode material to overcome these limitations. The hybrid TiO2-C matrix synthesized via two-step high-energy ball milling effectively regulated the irreversible lithiation/delithiation of the active Sn electrode and facilitated Li-ion diffusion. At the appropriate C concentration, Sn-TiO2-C exhibited significantly enhanced cycling performance and rate capability compared with its counterparts (Sn-TiO2 and Sn-C). Sn-TiO2-C delivers good reversible specific capacities (669 mAh g−1 after 100 cycles at 200 mA g−1 and 651 mAh g−1 after 500 cycles at 500 mA g−1) and rate performance (446 mAh g−1 at 3000 mA g−1). The superiority of Sn-TiO2-C over Sn-TiO2 and Sn-C was corroborated with electrochemical impedance spectroscopy, which revealed faster Li-ion diffusion kinetics in the presence of the hybrid TiO2-C matrix than in the presence of TiO2 or C alone. Therefore, Sn-TiO2-C is a potential anode for next-generation Li-ion batteries. Full article
(This article belongs to the Special Issue Nanomaterials for Ion Battery Applications II)
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 4801 KiB  
Review
Recent Advances and Challenges in Ti-Based Oxide Anodes for Superior Potassium Storage
by Qinglin Deng, Yang Zhao, Xuhui Zhu, Kaishuai Yang and Mai Li
Nanomaterials 2023, 13(18), 2539; https://doi.org/10.3390/nano13182539 - 11 Sep 2023
Cited by 1 | Viewed by 766
Abstract
Developing high-performance anodes is one of the most effective ways to improve the energy storage performances of potassium-ion batteries (PIBs). Among them, Ti-based oxides, including TiO2, K2Ti6O13, K2Ti4O9, K [...] Read more.
Developing high-performance anodes is one of the most effective ways to improve the energy storage performances of potassium-ion batteries (PIBs). Among them, Ti-based oxides, including TiO2, K2Ti6O13, K2Ti4O9, K2Ti8O17, Li4Ti5O12, etc., as the intrinsic structural advantages, are of great interest for applications in PIBs. Despite numerous merits of Ti-based oxide anodes, such as fantastic chemical and thermal stability, a rich reserve of raw materials, non-toxic and environmentally friendly properties, etc., their poor electrical conductivity limits the energy storage applications in PIBs, which is the key challenge for these anodes. Although various modification projects are effectively used to improve their energy storage performances, there are still some related issues and problems that need to be addressed and solved. This review provides a comprehensive summary on the latest research progress of Ti-based oxide anodes for the application in PIBs. Besides the major impactful work and various performance improvement strategies, such as structural regulation, carbon modification, element doping, etc., some promising research directions, including effects of electrolytes and binders, MXene-derived TiO2-based anodes and application as a modifier, are outlined in this review. In addition, noteworthy research perspectives and future development challenges for Ti-based oxide anodes in PIBs are also proposed. Full article
(This article belongs to the Special Issue Nanomaterials for Ion Battery Applications II)
Show Figures

Figure 1

Back to TopTop