Design and Fabrication of Organic/Inorganic Nanocomposites, Volume II

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: 20 June 2024 | Viewed by 4544

Special Issue Editor


E-Mail Website
Guest Editor
Micro/Nano Systems Laboratory, Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
Interests: microfluidics; flow chemistry; optofluidics; nanoparticles; nanomedicines; photonic crystals; functional composites; superhydrophobic surfaces; surface modification
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanocomposites are multiphase solid materials where at least one of the components has a nanoscale dimension. Even though the origins were not understood at that time, the inclusion of nanomaterials in a host matrix has been utilized for millennia to produce materials with unique properties. The historical examples are the Roman Lycurgus cup, medieval stained glass, Damascus steel, and carbon black reinforced rubber for automobile tires. Today, nanocomposites are widely employed in the scientific and industrial community to enhance the properties of materials significantly (e.g., mechanical, optical, electrical, thermal, magnetic, biological, electrochemical, and catalytic properties). This Special Issue of Nanomaterials aims to consider the current state of the arts in the fields of organic/inorganic nanocomposites. Since research on nanocomposites is a multidisciplinary area, this Special Issue welcomes all submissions focusing on the various technical advances, including but not limited to theoretical simulation, design, fabrication, or characterization of nanocomposites with various compositions, shapes, sizes, surface functional groups, etc.

Dr. Jong-Min Lim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocomposites
  • polymer materials
  • colloids
  • nanoparticles
  • nanowires
  • carbon nanotube
  • photonic crystal
  • dispersion
  • surface chemistry
  • energy
  • drug delivery
  • catalysis
  • electronic materials
  • thermal interface materials

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2162 KiB  
Article
Photocatalytic Activity of Ag Nanoparticles Deposited on Thermoexfoliated g-C3N4
by Karina Portillo-Cortez, Uriel Caudillo-Flores, Perla Sánchez-López, Elena Smolentseva, David Dominguez and Sergio Fuentes-Moyado
Nanomaterials 2024, 14(7), 623; https://doi.org/10.3390/nano14070623 - 02 Apr 2024
Viewed by 527
Abstract
The limited access to fresh water and the increased presence of emergent pollutants (EPs) in wastewater has increased the interest in developing strategies for wastewater remediation, including photocatalysis. Graphitic carbon nitride (g-C3N4) is a 2D non-metal material with outstanding [...] Read more.
The limited access to fresh water and the increased presence of emergent pollutants (EPs) in wastewater has increased the interest in developing strategies for wastewater remediation, including photocatalysis. Graphitic carbon nitride (g-C3N4) is a 2D non-metal material with outstanding properties, such as a 2.7 eV bandgap and physicochemical stability, making it a promising photocatalyst. This work reports the process of obtaining high-surface-area (SA) g-C3N4 using the thermal-exfoliation process and the posterior effect of Ag-nanoparticle loading over the exfoliated g-C3N4 surface. The photocatalytic activity of samples was evaluated through methylene blue (MB) degradation under visible-light radiation and correlated to its physical properties obtained by XRD, TEM, BET, and UV–Vis analyses. Moreover, 74% MB degradation was achieved by exfoliated g-C3N4 compared to its bulk counterpart (55%) in 180 min. Moreover, better photocatalytic performances (94% MB remotion) were registered at low Ag loading, with 5 wt.% as the optimal value. Such an improvement is attributed to the synergetic effect produced by a higher SA and the role of Ag nanoparticles in preventing charge-recombination processes. Based on the results, this work provides a simple and efficient methodology to obtain Ag/g-C3N4 photocatalysts with enhanced photocatalytic performance that is adequate for water remediation under sunlight conditions. Full article
(This article belongs to the Special Issue Design and Fabrication of Organic/Inorganic Nanocomposites, Volume II)
Show Figures

Figure 1

20 pages, 6298 KiB  
Article
Nanolayered Structures and Nanohybrids Based on a Ternary System Co/Ti/Zn for Production of Photo-Active Nanocomposites and Purification of Water Using Light
by Osama Saber, Aya Osama, Nagih M. Shaalan and Mostafa Osama
Nanomaterials 2024, 14(1), 93; https://doi.org/10.3390/nano14010093 - 28 Dec 2023
Viewed by 683
Abstract
Water pollution has emerged as a major challenge for the scientific community because of the rapid expansion of the population and the industrial sector in the world. The current study focuses on introducing a new track for designing new optical nanocomposites for purifying [...] Read more.
Water pollution has emerged as a major challenge for the scientific community because of the rapid expansion of the population and the industrial sector in the world. The current study focuses on introducing a new track for designing new optical nanocomposites for purifying water in addition to providing a new additive for building new nanohybrids. These targets were achieved through building a ternary system of Co/Ti/Zn nanocomposites and nanolayered structures. The Co/Ti/Zn nanolayered structures were prepared and intercalated by different kinds of organic acids: monocarboxylic and dicarboxylic acids. Long chains of organic acids were used to construct series of organic–inorganic nanohybrids. X-ray diffraction, thermal analyses, Fourier Transform Infrared spectroscopy, and scanning electron microscopy confirmed the formation of nanolayered structures and nanohybrids. The optical properties of the nanolayered structure showed that the Co/Ti/Zn LDH became photo-active compared with the usual Al/Zn LDH because of the reduction in the band gap energy from 5.3 eV to 3.3 eV. After thermal treatment, a highly photo-active nanocomposite was produced through observing more reduction for the band gap energy to become 2.8 eV. In addition, the dye of Acid Green 1 completely decomposed and converted to water and carbon dioxide during 17 min of UV radiation by the dual Co/Ti-doped zinc oxide nanocomposite. In addition, the kinetic study confirmed that the high optical activity of the dual Co/Ti-doped zinc oxide nanocomposite accelerated the degradation of the green dyes. Finally, from these results it could be concluded that designing effective nanocomposite for purification of water was accomplished through converting 2D nanolayered structures to a 3D porous structure of Ni/Ti/Zn nanocomposites. In addition, a new additive was achieved for heterostructured hybrids through building new Co/Ti/Zn/organic nanohybrids. Full article
(This article belongs to the Special Issue Design and Fabrication of Organic/Inorganic Nanocomposites, Volume II)
Show Figures

Figure 1

14 pages, 2622 KiB  
Article
Carbonized Leather Waste with Deposited Polypyrrole Nanotubes: Conductivity and Dye Adsorption
by Jaroslav Stejskal, Fahanwi Asabuwa Ngwabebhoh, Miroslava Trchová and Jan Prokeš
Nanomaterials 2023, 13(20), 2794; https://doi.org/10.3390/nano13202794 - 19 Oct 2023
Cited by 1 | Viewed by 1122
Abstract
This paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes [...] Read more.
This paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes produced by the oxidative polymerization of pyrrole in the presence of methyl orange. The composites of carbonized leather with deposited polypyrrole nanotubes of various composition were compared with similar composites based on globular polypyrrole. Their molecular structure was characterized by infrared and Raman spectra. Both conducting components formed a bicontinuous structure. The resistivity was newly determined by a four-point van der Pauw method and monitored as a function of pressure applied up to 10 MPa. The typical conductivity of composites was of the order of 0.1 to 1 S cm−1 and it was always higher for polypyrrole nanotubes than for globular polypyrrole. The method also allows for the assessment of mechanical features, such as powder fluffiness. The conductivity decreased by 1–2 orders of magnitude after treatment with ammonia but still maintained a level acceptable for applications operating under non-acidic conditions. The composites were tested for dye adsorption, specifically cationic methylene blue and anionic methyl orange, using UV-vis spectroscopy. The composites were designed for future use as functional adsorbents controlled by the electrical potential or organic electrode materials. Full article
(This article belongs to the Special Issue Design and Fabrication of Organic/Inorganic Nanocomposites, Volume II)
Show Figures

Figure 1

14 pages, 33974 KiB  
Article
Mitigating the Recrystallization of a Cold-Worked Cu-Al2O3 Nanocomposite via Enhanced Zener Drag by Nanocrstalline Cu-Oxide Particles
by Ramasis Goswami, Alex Moser and Chandra S. Pande
Nanomaterials 2023, 13(19), 2727; https://doi.org/10.3390/nano13192727 - 08 Oct 2023
Viewed by 838
Abstract
The strength of metals and alloys at elevated temperatures typically decreases due to the recovery, recrystallization, grain growth, and growth of second-phase particles. We report here a cold-worked Cu-Al2O3 composite did not recrystallize up to a temperature of 0.83Tm [...] Read more.
The strength of metals and alloys at elevated temperatures typically decreases due to the recovery, recrystallization, grain growth, and growth of second-phase particles. We report here a cold-worked Cu-Al2O3 composite did not recrystallize up to a temperature of 0.83Tm of Cu. The composite was manufactured through the internal oxidation process of dilute Cu-0.15 wt.% Al alloy and was characterized by transmission electron microscopy to study the nature of oxide precipitates. As a result of internal oxidation, a small volume fraction (1%) of Al2O3 particles forms. In addition, a high density of extremely fine (2–5 nm) Cu2O particles has been observed to form epitaxially within the elongated Cu grains. These finely dispersed second-phase Cu2O particles enhance the Zener drag significantly by three orders of magnitude as compared to Al2O3 particles and retain their original size and spacing at elevated temperatures. This limits the grain boundary migration and the nucleation of defect-free regions of different orientations and inhibits the recrystallization process at elevated temperatures. In addition, due to the limited grain boundary migration, a bundle of stacking faults appears instead of annealing twins. This investigation has led to a better understanding of how to prevent the recrystallization process of heavily deformed metallic material containing oxide particles. Full article
(This article belongs to the Special Issue Design and Fabrication of Organic/Inorganic Nanocomposites, Volume II)
Show Figures

Figure 1

17 pages, 5887 KiB  
Article
Study of Aerogel-Modified Recycled Polyurethane Nanocomposites
by Xiaohua Gu, Shangwen Zhu, Siwen Liu and Yan Liu
Nanomaterials 2023, 13(18), 2583; https://doi.org/10.3390/nano13182583 - 18 Sep 2023
Viewed by 947
Abstract
In this study, a liquid regenerated polyether polyol was obtained after the degradation of waste PU foam by the two-component decrosslinker agents ethylene glycol and ethanolamine. The regenerated polyol-based polyurethane foam was modified by adding different ratios of SiO2 aerogel through the [...] Read more.
In this study, a liquid regenerated polyether polyol was obtained after the degradation of waste PU foam by the two-component decrosslinker agents ethylene glycol and ethanolamine. The regenerated polyol-based polyurethane foam was modified by adding different ratios of SiO2 aerogel through the self-preparation of silica aerogel (SiO2 aerogel) to prepare aerogel/regenerated polyurethane foam nanocomposites of SiO2 aerogel-modified regenerated polyurethane composites. A series of analytical tests on self-prepared silica aerogel and aerogel-modified recycled polyurethane foam composites were performed. The analysis of the test results shows that the regenerated rigid PU foam obtained with SiO2 aerogel addition of 0.3% in the polyurethane degradation material has a small density, low thermal conductivity, and higher compressive strength; hence, the prepared silica aerogel-regenerated polyol-based polyurethane nanocomposite has good thermal insulation and strength support properties. The clean, low-carbon, and high-value utilization of recycled waste polyurethane was achieved. Full article
(This article belongs to the Special Issue Design and Fabrication of Organic/Inorganic Nanocomposites, Volume II)
Show Figures

Figure 1

Back to TopTop