Safe Design and Toxicology In Vitro of Nanomaterials

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Biology and Medicines".

Deadline for manuscript submissions: closed (30 November 2023) | Viewed by 3959

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
Interests: nanotoxicology; nanosafety; cytotoxicity; genotoxicity; safe design; toxicology in vitro

Special Issue Information

Dear Colleagues,

In recent years, with the application of nanomaterials in the field of biomedicine, nanotoxicology and nanosafety related to nanomaterials have attracted extensive attention. Fully understanding the production and application risks of nanomaterials related to toxicity is a safety issue that needs attention in the development of nanotechnology and nanomedicine.

This Special Issue will introduce the current status of research related to the safe design and toxicology of nanomaterials and demonstrate more clearly the progress in this field of nanoscience and technology. We encourage authors to contribute original research and review articles that are similar to the topic of this special issue.

Dr. May N. Bin-Jumah
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanotoxicology
  • nanosafety
  • cytotoxicity
  • genotoxicity
  • safe design
  • toxicology in vitro

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 8180 KiB  
Article
The Antifungal Activities of Silver Nano-Aggregates Biosynthesized from the Aqueous Extract and the Alkaline Aqueous Fraction of Rhazya stricta against Some Fusarium Species
by Fatimah Al-Otibi
Nanomaterials 2024, 14(1), 88; https://doi.org/10.3390/nano14010088 - 28 Dec 2023
Viewed by 723
Abstract
Rhazya stricta is a major medicinal species used in indigenous medicinal herbal medications in South Asia, the Middle East, Iran, and Iraq to treat a variety of ailments. The current study aimed to investigate the antifungal properties of biosynthesized silver nanoparticles (AgNPs) made [...] Read more.
Rhazya stricta is a major medicinal species used in indigenous medicinal herbal medications in South Asia, the Middle East, Iran, and Iraq to treat a variety of ailments. The current study aimed to investigate the antifungal properties of biosynthesized silver nanoparticles (AgNPs) made from R. stricta aqueous extract and its alkaline aqueous fraction. Fourier transform infrared spectroscopy (FTIR), UV-vis spectrophotometry, dynamic light scattering (DLS), and transmitted electron microscopy (TEM) were used to characterize AgNPs. The produced extracts and AgNPs were tested for their antifungal efficacy against four Fusarium spp. All of the characterization experiments proved the biosynthesis of targeted AgNPs. FTIR showed a wide distribution of hydroxyl, amino, carboxyl, and alkyl functional groups among all preparations. The DLS results showed that the produced Aq-AgNPs and the Alk-AgNPs had an average size of 95.9 nm and 54.04 nm, respectively. On the other hand, TEM results showed that the Aq-AgNPs and Alk-AgNPs had average diameters ranging from 21 to 90 nm and 7.25 to 25.32 nm. Both AgNPs absorbed UV light on average at 405 nm and 415 nm, respectively. Regarding the fungicidal activity, the highest doses of Aq-extract and Aq-AgNPs inhibited the mycelial growth of F. incarnatum (19.8%, 87.5%), F. solani (28.1%, 72.3%), F. proliferatum (37.5%, 75%), and F. verticillioides (27.1%, 62.5%), respectively (p < 0.001). Interestingly, the Alk-fraction had stronger inhibition than the biosynthesized AgNPs, which resulted in complete inhibition at the doses of 10% and 20% (p < 0.001). Furthermore, microscopic analysis demonstrated that both AgNPs caused obvious morphological alterations in the treated organisms when compared to the control. In conclusion, R. stricta’s Aq-extract, alkaline fraction, and their biosynthesized AgNPs show substantial antifungal efficacy against several Fusarium spp. It is the first study to highlight the prospective biological activities of R. stricta Aq-extract and its alkaline fraction against F. incarnatum, F. proliferatum, and F. verticillioides. In addition, it is the first opportunity to deeply investigate the ultrastructural changes induced in the Fusarium species treated with R. stricta crude Aq-extract and its biosynthesized AgNPs. More studies are required to investigate their biological effect against other Fusarium or fungal species. Full article
(This article belongs to the Special Issue Safe Design and Toxicology In Vitro of Nanomaterials)
Show Figures

Figure 1

14 pages, 7198 KiB  
Article
Biological Activity of Biosynthesized Silver Nanoaggregates Prepared from the Aqueous Extract of Cymbopogon citratus against Candida spp.
by Fatimah Al-Otibi, Luluwah S. Albulayhid, Raedah I. Alharbi, Atheer A. Almohsen and Ghada M. AlShowiman
Nanomaterials 2023, 13(15), 2198; https://doi.org/10.3390/nano13152198 - 28 Jul 2023
Cited by 1 | Viewed by 1043
Abstract
Cymbopogon citratus is commonly used in folk medicine for the treatment of nervous and gastrointestinal disturbances and other medical issues because of its potent antioxidant capacity. The current study evaluated the anti-candida effects of silver nanoparticles (AgNPs) synthesized from an aqueous extract of [...] Read more.
Cymbopogon citratus is commonly used in folk medicine for the treatment of nervous and gastrointestinal disturbances and other medical issues because of its potent antioxidant capacity. The current study evaluated the anti-candida effects of silver nanoparticles (AgNPs) synthesized from an aqueous extract of C. citratus against different Candida spp. The aqueous extract was prepared from the fresh leaves of C. citratus. The silver nanoparticles (AgNPs) were prepared and validated by UV spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and zeta size analysis. C. albicans, C. krusei, C. parapsilosis, C. tropicalis, C. famata, C. rhodotorula, and C. glabrata were used in the antifungal assay. Microscopical imaging were used to investigate the different morphological changes induced by treatment. FTIR spectrum confirmed the existence of various functional groups of biomolecules capping the nanoparticles. The average particle size of synthesized AgNPs was 100.6 nm by zeta-sizer and 0.012 to 0.059 mm by TEM. In the antifungal assay, AgNPs aggregates induced significant inhibition of the growth of all species (p < 0.05) compared to the control and the biofilm maturation in C. famata and C. albicans. These considerable antifungal activities might lead to the development of appropriate alternative remedy for the treatment of fungal infections. Full article
(This article belongs to the Special Issue Safe Design and Toxicology In Vitro of Nanomaterials)
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 9398 KiB  
Review
Exocytosis of Nanoparticles: A Comprehensive Review
by Jie Liu, Yuan-Yuan Liu, Chen-Si Li, Aoneng Cao and Haifang Wang
Nanomaterials 2023, 13(15), 2215; https://doi.org/10.3390/nano13152215 - 30 Jul 2023
Cited by 5 | Viewed by 1742
Abstract
Both biomedical applications and safety assessments of manufactured nanomaterials require a thorough understanding of the interaction between nanomaterials and cells, including how nanomaterials enter cells, transport within cells, and leave cells. However, compared to the extensively studied uptake and trafficking of nanoparticles (NPs) [...] Read more.
Both biomedical applications and safety assessments of manufactured nanomaterials require a thorough understanding of the interaction between nanomaterials and cells, including how nanomaterials enter cells, transport within cells, and leave cells. However, compared to the extensively studied uptake and trafficking of nanoparticles (NPs) in cells, less attention has been paid to the exocytosis of NPs. Yet exocytosis is an indispensable process of regulating the content of NPs in cells, which in turn influences, even decides, the toxicity of NPs to cells. A comprehensive understanding of the mechanisms and influencing factors of the exocytosis of NPs is not only essential for the safety assessment of NPs but also helpful for guiding the design of safe and highly effective NP-based materials for various purposes. Herein, we review the current status and progress of studies on the exocytosis of NPs. Firstly, we introduce experimental procedures and considerations. Then, exocytosis mechanisms/pathways are summarized with a detailed introduction of the main pathways (lysosomal and endoplasmic reticulum/Golgi pathway) and the role of microtubules; the patterns of exocytosis kinetics are presented and discussed. Subsequently, the influencing factors (initial content and location of intracellular NPs, physiochemical properties of NPs, cell type, and extracellular conditions) are fully discussed. Although there are inconsistent results, some rules are obtained, like smaller and charged NPs are more easily excreted. Finally, the challenges and future directions in the field have been discussed. Full article
(This article belongs to the Special Issue Safe Design and Toxicology In Vitro of Nanomaterials)
Show Figures

Figure 1

Back to TopTop