molecules-logo

Journal Browser

Journal Browser

Zeolites and Porous Materials: Synthesis, Properties and Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Inorganic Chemistry".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 7679

Special Issue Editors


E-Mail Website
Guest Editor
School of Environment and Chemical Engineering, Foshan University, Foshan, China
Interests: porous materials; MOFs; activated carbon; adsorption; separation; VOCs

E-Mail Website
Guest Editor
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
Interests: zeolites; catalysis; diffusion; alkylation; functionalization

Special Issue Information

Dear Colleagues,

Since the invention of synthetic zeolite in 1959, the innovation of porous materials has played an important role in industrial production. The porous material is a kind of material with a network structure composed of interconnected or closed holes. Because of its large specific surface area and porosity, good chemical properties, photoelectric properties, mechanical properties, adsorption properties, and permeability properties, it is widely used in industrial production and life. With the continuous development of materials science, the types of porous materials are increasing, including natural porous materials, molecular sieve, novel carbon materials (carbon molecular sieve, super activated carbon, carbon fiber, carbon nanotubes, etc.), porous metal materials, metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, etc. As a new type of functional material, porous materials have a wide range of applications in the fields of gas adsorption and separation, catalysis, fluorescence, sensor, etc.

We would like to invite you to contribute to this Special Issue of Molecules titled “Zeolites and Porous Materials: Synthesis, Properties and Applications”. Your valuable research articles and reviews can find a worldwide audience among readers of Molecules.

Dr. Feng Xu
Prof. Dr. Baoyu Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • porous materials
  • zeolites
  • MOFs
  • synthesis
  • properties
  • applications

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 1250 KiB  
Article
High Reactivity of Dimethyl Ether Activated by Zeolite Ferrierite within a Fer Cage: A Prediction Study
by Xiaofang Chen, Pei Feng and Xiujie Li
Molecules 2024, 29(9), 2000; https://doi.org/10.3390/molecules29092000 - 26 Apr 2024
Viewed by 87
Abstract
The zeolite-catalyzed conversion of DME into chemicals is considered environmentally friendly in industry. The periodic density functional theory, statistical thermodynamics, and the transition state theory are used to study some possible parallel reactions about the hydrogen-bonded DME over zeolite ferrierite. The following are [...] Read more.
The zeolite-catalyzed conversion of DME into chemicals is considered environmentally friendly in industry. The periodic density functional theory, statistical thermodynamics, and the transition state theory are used to study some possible parallel reactions about the hydrogen-bonded DME over zeolite ferrierite. The following are the key findings: (1) the charge separation probably leads to the conversion of a hydrogen-bonded DME into a dimethyl oxonium ion (i.e., DMO+ or (CH3)2OH+) with a positive charge of about 0.804 e; (2) the methylation of DME, CH3OH, H2O, and CO by DMO+ at the T2O6 site of zeolite ferrierite shows the different activated internal energy (∆E) ranging from 18.47 to 30.06 kcal/mol, implying the strong methylation ability of DMO+; (3) H-abstraction by DMO+ is about 3.94–15.53 or 6.57–18.16 kcal/mol higher than DMO+ methylation in the activation internal energy; (4) six DMO+-mediated reactions are more likely to occur due to the lower barriers, compared to the experimental barrier (i.e., 39.87 kcal/mol) for methyl acetate synthesis; (5) active intermediates, such as (CH3)3O+, (CH3)2OH+, CH3CO+, CH3OH2+, and CH2=OH+, are expected to appear; (6) DMO+ is slightly weaker than the well-known surface methoxy species (ZO-CH3) in methylation; and (7) the methylated activity declines in the order of DME, CH3OH, H2O, and CO, with corresponding rate constants at 463.15 K of about 3.4 × 104, 1.1 × 102, 0.18, and 8.2 × 10−2 s−1, respectively. Full article
(This article belongs to the Special Issue Zeolites and Porous Materials: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

14 pages, 6566 KiB  
Article
A Polyzwitterionic@MOF Hydrogel with Exceptionally High Water Vapor Uptake for Efficient Atmospheric Water Harvesting
by Jian Yan, Wenjia Li, Yingyin Yu, Guangyu Huang, Junjie Peng, Daofei Lv, Xin Chen, Xun Wang and Zewei Liu
Molecules 2024, 29(8), 1851; https://doi.org/10.3390/molecules29081851 - 18 Apr 2024
Viewed by 352
Abstract
Atmospheric water harvesting (AWH) is considered a promising strategy for sustainable freshwater production in landlocked and arid regions. Hygroscopic salt-based composite sorbents have attracted widespread attention for their water harvesting performance, but suffer from aggregation and leakage issues due to the salting-out effect. [...] Read more.
Atmospheric water harvesting (AWH) is considered a promising strategy for sustainable freshwater production in landlocked and arid regions. Hygroscopic salt-based composite sorbents have attracted widespread attention for their water harvesting performance, but suffer from aggregation and leakage issues due to the salting-out effect. In this study, we synthesized a PML hydrogel composite by incorporating zwitterionic hydrogel (PDMAPS) and MIL-101(Cr) as a host for LiCl. The PML hydrogel was characterized using various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The swelling properties and water vapor adsorption-desorption properties of the PML hydrogel were also assessed. The results demonstrate that the MIL-101(Cr) was uniformly embedded into PDMAP hydrogel, and the PML hydrogel exhibits a swelling ratio of 2.29 due to the salting-in behavior. The PML hydrogel exhibited exceptional water vapor sorption capacity of 0.614 g/g at 298 K, RH = 40% and 1.827 g/g at 298 K, RH = 90%. It reached 80% of its saturated adsorption capacity within 117 and 149 min at 298 K, RH = 30% and 90%, respectively. Additionally, the PML hydrogel showed excellent reversibility in terms of water vapor adsorption after ten consecutive cycles of adsorption-desorption. The remarkable adsorption capacity, favorable adsorption-desorption rate, and regeneration stability make the PML hydrogel a potential candidate for AWH. This polymer-MOF synergistic strategy for immobilization of LiCl in this work offers new insights into designing advanced materials for AWH. Full article
(This article belongs to the Special Issue Zeolites and Porous Materials: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

14 pages, 6302 KiB  
Article
Study of CHF3/CH2F2 Adsorption Separation in TIFSIX-2-Cu-i
by Shoudong Wang, Lei Zhou, Hongyun Qin, Zixu Dong, Haoyuan Li, Bo Liu, Zhilu Wang, Lina Zhang, Qiang Fu and Xia Chen
Molecules 2024, 29(8), 1721; https://doi.org/10.3390/molecules29081721 - 11 Apr 2024
Viewed by 342
Abstract
Hydrofluorocarbons (HFCs) have important applications in different industries; however, they are environmentally unfriendly due to their high global warming potential (GWP). Hence, reclamation of used hydrofluorocarbons via energy-efficient adsorption-based separation will greatly contribute to reducing their impact on the environment. In particular, the [...] Read more.
Hydrofluorocarbons (HFCs) have important applications in different industries; however, they are environmentally unfriendly due to their high global warming potential (GWP). Hence, reclamation of used hydrofluorocarbons via energy-efficient adsorption-based separation will greatly contribute to reducing their impact on the environment. In particular, the separation of azeotropic refrigerants remains challenging, such as typical mixtures of CH2F2 (HFC-23) and CHF3 (HFC-32), due to a lack of adsorptive mechanisms. Metal–organic frameworks (MOFs) can provide a promising solution for the separation of CHF3–CH2F2 mixtures. In this study, the adsorption mechanism of CHF3–CH2F2 mixtures in TIFSIX-2-Cu-i was revealed at the microscopic level by combining static pure-component adsorption experiments, molecular simulations, and density-functional theory (DFT) calculations. The adsorption separation selectivity of CH2F2/CHF3 in TIFSIX-2-Cu-i is 3.17 at 3 bar under 308 K. The existence of similar TiF62− binding sites for CH2F2 or CHF3 was revealed in TIFSIX-2-Cu-i. Interactions between the fluorine atom of the framework and the hydrogen atom of the guest molecule were found to be responsible for determining the high adsorption separation selectivity of CH2F2/CHF3. This exploration is important for the design of highly selective adsorbents for the separation of azeotropic refrigerants. Full article
(This article belongs to the Special Issue Zeolites and Porous Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

11 pages, 2245 KiB  
Article
Morphology Regulation of Zeolite MWW via Classical/Nonclassical Crystallization Pathways
by Wenwen Zi, Zejing Hu, Xiangyu Jiang, Junjun Zhang, Chengzhi Guo, Konggang Qu, Shuo Tao, Dengran Tan and Fangling Liu
Molecules 2024, 29(1), 170; https://doi.org/10.3390/molecules29010170 - 27 Dec 2023
Viewed by 776
Abstract
The morphology and porosity of zeolites have an important effect on adsorption and catalytic performance. In the work, simple inorganic salts, i.e., Na salts were used to synthesize MWW zeolite using the organic compound 1-Butyl-2,3-dimethyl-1H-imidazol-3-ium hydroxide as a structure-directing agent and the morphology [...] Read more.
The morphology and porosity of zeolites have an important effect on adsorption and catalytic performance. In the work, simple inorganic salts, i.e., Na salts were used to synthesize MWW zeolite using the organic compound 1-Butyl-2,3-dimethyl-1H-imidazol-3-ium hydroxide as a structure-directing agent and the morphology was regulated by the alkali metals. The sample synthesized without Na salts shows a dense hexagon morphology, while different morphologies like ellipsoid, wool ball, and uniform hexagon appear when using NaOH, Na2CO3, and NaHCO3, respectively. Moreover, the impact of Na salts on the induction, nucleation, and the evolution of crystal growth was studied. Different kinds of Na salts have a different impact on the crystalline induction time in the order of NaHCO3 (36 h) < Na2CO3 (72 h) = NaOH (72 h). Meanwhile, the crystalline mechanism with the cooperation of inorganic salts and the organic SDAs is proposed. NaOH- and Na2CO3-MWW zeolite crystallized with a network of hydrogel via the nonclassical pathway in the system; however, the product is synthesized via a classical route in the NaHCO3 environment. This work provides information about MWW zeolite crystallization and modulating diverse morphologies by adjusting the process. Full article
(This article belongs to the Special Issue Zeolites and Porous Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

15 pages, 2389 KiB  
Article
Simulating Crystal Structure, Acidity, Proton Distribution, and IR Spectra of Acid Zeolite HSAPO-34: A High Accuracy Study
by Xiaofang Chen and Tie Yu
Molecules 2023, 28(24), 8087; https://doi.org/10.3390/molecules28248087 - 14 Dec 2023
Cited by 28 | Viewed by 779
Abstract
It is a challenge to characterize the acid properties of microporous materials in either experiments or theory. This study presents the crystal structure, acid site, acid strength, proton siting, and IR spectra of HSAPO-34 from the SCAN + rVV10 method. The results indicate: [...] Read more.
It is a challenge to characterize the acid properties of microporous materials in either experiments or theory. This study presents the crystal structure, acid site, acid strength, proton siting, and IR spectra of HSAPO-34 from the SCAN + rVV10 method. The results indicate: the crystal structures of various acid sites of HSAPO-34 deviate from the space group of R3¯; the acid strength inferred from the DPE value likely decreases with the proton binding sites at O(2), O(4), O(1),and O(3), contrary to the stability order in view of the internal energy; the calculated ensemble-averaged DPE is about 1525 kJ/mol at 673.15 K; and the proton siting and the proton distribution are distinctly influenced by the temperature: at low temperatures, the proton is predominantly located at O(3), while it prefers O(2) at high temperatures, and the proton at O(4) assumedly has the least distribution at 273.15–773.15 K. In line with the neutron diffraction experiment, a correction factor of 0.979 is needed to correct for the calculated hydroxyl stretching vibration (ν(O-H)) of HSAPO-34. It seems that the SCAN meta-GGA method, compensating for some drawbacks of the GGA method, could provide satisfying results regarding the acid properties of HSAPO-34. Full article
(This article belongs to the Special Issue Zeolites and Porous Materials: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

15 pages, 10564 KiB  
Article
Efficient Selective Capture of Carbon Dioxide from Nitrogen and Methane Using a Metal-Organic Framework-Based Nanotrap
by Junjie Peng, Chengmin Fu, Jiqin Zhong, Bin Ye, Jing Xiao, Chongxiong Duan and Daofei Lv
Molecules 2023, 28(23), 7908; https://doi.org/10.3390/molecules28237908 - 02 Dec 2023
Cited by 1 | Viewed by 947
Abstract
Selective carbon capture from exhaust gas and biogas, which mainly involves the separation of CO2/N2 and CO2/CH4 mixtures, is of paramount importance for environmental and industrial requirements. Herein, we propose an interesting metal-organic framework-based nanotrap, namely ZnAtzCO [...] Read more.
Selective carbon capture from exhaust gas and biogas, which mainly involves the separation of CO2/N2 and CO2/CH4 mixtures, is of paramount importance for environmental and industrial requirements. Herein, we propose an interesting metal-organic framework-based nanotrap, namely ZnAtzCO3 (Atz = 3-amino-1,2,4-triazolate, CO32− = carbonate), with a favorable ultramicroporous structure and electrostatic interactions that facilitate efficient capture of CO2. The structural composition and stability were verified by FTIR, TGA, and PXRD techniques. Particularly, ZnAtzCO3 demonstrated high CO2 capacity in a wide range of pressures, with values of 44.8 cm3/g at the typical CO2 fraction of the flue gas (15 kPa) and 56.0 cm3/g at the CO2 fraction of the biogas (50 kPa). Moreover, ultrahigh selectivities over CO2/N2 (15:85, v:v) and CO2/CH4 (50:50, v:v) of 3538 and 151 were achieved, respectively. Molecular simulations suggest that the carbon atom of CO2 can form strong electrostatic Cδ+···δ−O-C interactions with four oxygen atoms in the carbonate ligands, while the oxygen atom of CO2 can interact with the hydrogen atoms in the triazolate ligands through Oδ−···δ+H-C interactions, which makes ZnAtzCO3 an optimal nanotrap for CO2 fixation. Furthermore, breakthrough experiments confirmed excellent real-world separation toward CO2/N2 and CO2/CH4 mixtures on ZnAtzCO3, demonstrating its great potential for selective CO2 capture. Full article
(This article belongs to the Special Issue Zeolites and Porous Materials: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

10 pages, 1563 KiB  
Article
Exquisitely Constructing a Robust MOF with Dual Pore Sizes for Efficient CO2 Capture
by Yanxi Li, Yuhua Bai, Zhuozheng Wang, Qihan Gong, Mengchen Li, Yawen Bo, Hua Xu, Guiyuan Jiang and Kebin Chi
Molecules 2023, 28(17), 6276; https://doi.org/10.3390/molecules28176276 - 28 Aug 2023
Cited by 2 | Viewed by 1210
Abstract
Developing metal–organic framework (MOF) adsorbents with excellent performance and robust stability is of critical importance to reduce CO2 emissions yet challenging. Herein, a robust ultra-microporous MOF, Cu(bpfb)(bdc), with mixed ligands of N, N′-(1,4-phenylene)diisonicotinamide (bpfb), and 1,4-dicarboxybenzene (bdc) was delicately constructed. Structurally, this [...] Read more.
Developing metal–organic framework (MOF) adsorbents with excellent performance and robust stability is of critical importance to reduce CO2 emissions yet challenging. Herein, a robust ultra-microporous MOF, Cu(bpfb)(bdc), with mixed ligands of N, N′-(1,4-phenylene)diisonicotinamide (bpfb), and 1,4-dicarboxybenzene (bdc) was delicately constructed. Structurally, this material possesses double-interpenetrated frameworks formed by two staggered, independent frameworks, resulting in two types of narrow ultra-micropores of 3.4 × 5.0 and 4.2 × 12.8 Å2, respectively. The above structural properties make its highly selective separation at 273~298 K with a CO2 capacity of 71.0~86.2 mg/g. Its adsorption heat over CO2 and IAST selectivity were calculated to be 27 kJ/mol and 52.2, respectively. Remarkably, cyclic breakthrough experiments corroborate its impressive performance in CO2/N2 separation in not only dry but also 75% RH humid conditions. Molecular simulation reveals that C-H···OCO2 in the pores plays a pivotal role in the high selectivity of CO2 adsorption. These results point out the huge potential application of this material for CO2/N2 separation. Full article
(This article belongs to the Special Issue Zeolites and Porous Materials: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

13 pages, 6561 KiB  
Article
A Microporous Zn(bdc)(ted)0.5 with Super High Ethane Uptake for Efficient Selective Adsorption and Separation of Light Hydrocarbons
by Feng Xu, Yilu Wu, Juan Wu, Daofei Lv, Jian Yan, Xun Wang, Xin Chen, Zewei Liu and Junjie Peng
Molecules 2023, 28(16), 6000; https://doi.org/10.3390/molecules28166000 - 10 Aug 2023
Cited by 2 | Viewed by 823
Abstract
Separating light hydrocarbons (C2H6, C3H8, and C4H10) from CH4 is challenging but important for natural gas upgrading. A microporous metal-organic framework, Zn(bdc)(ted)0.5, based on terephthalic acid (bdc) and [...] Read more.
Separating light hydrocarbons (C2H6, C3H8, and C4H10) from CH4 is challenging but important for natural gas upgrading. A microporous metal-organic framework, Zn(bdc)(ted)0.5, based on terephthalic acid (bdc) and 1,4-diazabicyclo[2.2.2]octane (ted) ligands, is synthesized and characterized through various techniques, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and porosity analysis. The adsorption isotherms of light hydrocarbons on the material are measured and the isosteric adsorption heats of CH4, C2H6, C3H8, and C4H10 are calculated. The prediction of C2–4/C1 adsorption selectivities is accomplished using ideal adsorbed solution theory (IAST). The results indicate that the material exhibits exceptional characteristics, including a Brunauer-Emmett-Teller (BET) surface area of 1904 m2/g and a pore volume of 0.73 cm3/g. Notably, the material demonstrates remarkable C2H6 adsorption capacities (4.9 mmol/g), while CH4 uptake remains minimal at 0.4 mmol/g at 298 K and 100 kPa. These findings surpass those of most reported MOFs, highlighting the material’s outstanding performance. The isosteric adsorption heats of C2H6, C3H8, and C4H10 on the Zn(bdc)(ted)0.5 are higher than CH4, suggesting a stronger interaction between C2H6, C3H8, and C4H10 molecules and Zn(bdc)(ted)0.5. The molecular simulation reveals that Zn(bdc)(ted)0.5 prefers to adsorb hydrocarbon molecules with richer C-H bonds and larger polarizability, which results in a stronger dispersion force generated by an adsorbent-adsorbate induced polarization effect. Therefore, the selectivity of C4H10/CH4 is up to 180 at 100 kPa, C3H8/CH4 selectivity is 67, and the selectivity of C2H6/CH4 is 13, showing a great potential for separating C2–4 over methane. Full article
(This article belongs to the Special Issue Zeolites and Porous Materials: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 1335 KiB  
Review
Zeolite Properties, Methods of Synthesis, and Selected Applications
by Natalia Kordala and Mirosław Wyszkowski
Molecules 2024, 29(5), 1069; https://doi.org/10.3390/molecules29051069 - 29 Feb 2024
Cited by 1 | Viewed by 1754
Abstract
Zeolites, a group of minerals with unique properties, have been known for more than 250 years. However, it was the development of methods for hydrothermal synthesis of zeolites and their large-scale industrial applications (oil processing, agriculture, production of detergents and building materials, water [...] Read more.
Zeolites, a group of minerals with unique properties, have been known for more than 250 years. However, it was the development of methods for hydrothermal synthesis of zeolites and their large-scale industrial applications (oil processing, agriculture, production of detergents and building materials, water treatment processes, etc.) that made them one of the most important materials of the 20th century, with great practical and research significance. The orderly, homogeneous crystalline and porous structure of zeolites, their susceptibility to various modifications, and their useful physicochemical properties contribute to the continuous expansion of their practical applications in both large-volume processes (ion exchange, adsorption, separation of mixture components, catalysis) and specialized ones (sensors). The following review of the knowledge available in the literature on zeolites aims to present the most important information on the properties, synthesis methods, and selected applications of this group of aluminosilicates. Special attention is given to the use of zeolites in agriculture and environmental protection. Full article
(This article belongs to the Special Issue Zeolites and Porous Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

Back to TopTop