Metallogenesis of the Central Asian Orogenic Belt

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 557

Special Issue Editors


E-Mail Website1 Website2
Guest Editor
CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
Interests: mineral deposits; application of high-purity quartz
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Xi’an Center of China Geological Survey, Xi’an 710119, China
Interests: regional geology; structural geology; tectonics; metallogeny; orogenic belts

Special Issue Information

Dear Colleagues,

The Central Asian Orogenic Belt (CAOB) is one of the world's largest accretionary orogenic belts in the Phanerozoic era, spanning Eurasia from the Ural Mountains in the west to the Pacific Ocean in the east. It is bordered by the Siberian Craton in the north and the Solon suture zone in the east, and extends through the North Mountains of Kyrgyzstan and Uzbekistan to join the Ural suture zone in western China. A long and complex accretionary orogenic process, influenced by multiple geodynamic processes, has given rise to several large-scale metallogenic systems in the CAOB, resulting in multi-stage and multi-type mineralization. As one of the world's three major metallogenic regions, the CAOB is a focus of recent research on the petrogenesis, geochemistry, and geochronology of different geological tectonic units and mineral deposits. This Special Issue aims to understand and provide an overview on the regional tectonic evolution, the formation of igneous rocks, and their role in the formation of mineral deposits (especially the igneous system).

Prof. Dr. Xiaoyong Yang
Dr. Wenhua Ji
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • magma mixing
  • petrogenesis and geochronology
  • differentiation of rare earth elements
  • Precambrian
  • Phanerozoic
  • western Kunlun Mountains
  • Chinese Altay

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 15133 KiB  
Article
Rb–Sr Pyrite Dating and S–Pb Isotopes in the Fang’an Gold Deposit, Wuhe Area, Eastern Anhui Province
by Ying Wang, Ke Shi, Ze Zhong, Shenglian Ren, Juan Wang, Yan Zhang, Chuanzhong Song, Gang Zhang and Fangyu Ren
Minerals 2024, 14(4), 398; https://doi.org/10.3390/min14040398 - 13 Apr 2024
Viewed by 370
Abstract
The Fang’an gold deposit in the Wuhe area, Anhui Province, is located in the area adjacent to the Bengbu Uplift and Wuhe Platform Depression in the southeastern part of North China. This study aimed to determine the deposit’s mineralization age and the source [...] Read more.
The Fang’an gold deposit in the Wuhe area, Anhui Province, is located in the area adjacent to the Bengbu Uplift and Wuhe Platform Depression in the southeastern part of North China. This study aimed to determine the deposit’s mineralization age and the source of its metallogenic materials and mineralization processes through investigations into its geological characteristics, Rb–Sr isotopes, and S–Pb isotopes. The orebodies of the Fang’an gold deposit in the Neoarchean Xigudui Formation primarily exhibit a vein-type structure. The ore-forming process can be divided into four stages: (i) the quartz stage (Py1); (ii) the quartz–pyrite stage (Py2); (iii) the polymetallic sulfide stage (Py3); and (iv) the carbonate stage. Of these, the main mineralization stage is also the main period in which gold mineralization occurs. In situ sulfur isotope results of pyrite (Py1 to Py3) in the first three mineralization stages, suggesting a contribution of sulfur from crust–mantle magmatic fluids. The δ34S values for Py2 (average 5.51‰) are higher than Py1 (average 4.45‰) and showed that the magmatic fluids mixed with meteoric waters. The δ34S values for Py3 (average 5.18‰) are lower than Py2 (average 5.51‰), revealing that it related fluid immiscibility. The lead isotopic compositions of sulfides within the ores possessed 206Pb/204Pb ratios ranging from 16.759 to 16.93, 207Pb/204Pb ratios ranging from 15.311 to 15.402, and 208Pb/204Pb ratios ranging from 37.158 to 37.548. These lead data were plotted close to the Xigudui Formation, relatively distant from the Mesozoic granites, indicating that the Xigudui Formation was the source of lead for the Late Mesozoic ores of the deposit. Taken together, due to the degassing of mantle-derived magma in the shallow parts of the crust, it can be determined that the sources of ore-forming sulfur and lead were crust–mantle magmatic activities in the Wuhe area. Rb–Sr dating of pyrite from Fang’an gold deposit reveals that the mineralization occurred at 126.89 ± 0.58 Ma. Considering the previous research into the dating of magmatic rocks in the Wuhe area, we propose that the genesis of the Fang’an gold deposit is closely associated with magmatic activities in the area at around 130 Ma. Full article
(This article belongs to the Special Issue Metallogenesis of the Central Asian Orogenic Belt)
Show Figures

Figure 1

Back to TopTop