MEMS in Italy 2023

A special issue of Micromachines (ISSN 2072-666X).

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 7041

Special Issue Editor


E-Mail Website
Guest Editor
Dipartimento di Ingegneria Civile ed Ambientale, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
Interests: material and structural mechanics; computational mechanics; physically based AI; advanced materials; metamaterials; MEMS
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Microsystems or microelectromechanical systems (MEMS) over the last thirty years have seen impressive development in terms of potentialities and diffusion. They are now widespread as microsensors and/or micro-actuators, and can be found in many objects of common use.

Italy has become an important player in the MEMS industry in terms of contributions to research and development, design, production, and innovative applications.

The purpose of this Special Issue is to offer an overview of the importance of MEMS in Italy, focusing on new trends in design, fabrication processes, and applications.

I therefore warmly invite you to submit contributions on all scientific and technical aspects of MEMS in Italy.

Topics include, but are not limited to, the following:

  • Theory and multiphysics working principles of MEMS;
  • Multiphysics modeling and simulations for MEMS;
  • Fabrication processes for MEMS, including additive manufacturing at the micro-scale;
  • Experimental characterization and reliability for MEMS;
  • New trends in MEMS design and production;
  • Innovative applications of MEMS;
  • MEMS low-power sensing techniques and devices.

Prof. Dr. Alberto Corigliano
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • MEMS
  • microsystems
  • multiphysics
  • modeling and simulation
  • experimental characterization
  • fabrication processes

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 9451 KiB  
Article
Monte Carlo Approach to the Evaluation of Nanoparticles Size Distribution from the Analysis of UV-Vis-NIR Spectra
by Cristiano Lo Pò, Valentina Iacono, Stefano Boscarino, Maria Grazia Grimaldi and Francesco Ruffino
Micromachines 2023, 14(12), 2208; https://doi.org/10.3390/mi14122208 - 06 Dec 2023
Cited by 1 | Viewed by 774
Abstract
How nice would it be to obtain the size distribution of a nanoparticle dispersion fast and without electron microscope measurements? UV-Vis-NIR spectrophotometry offers a very rapid solution; however, the spectra interpretation can be very challenging and needs to take into account the size [...] Read more.
How nice would it be to obtain the size distribution of a nanoparticle dispersion fast and without electron microscope measurements? UV-Vis-NIR spectrophotometry offers a very rapid solution; however, the spectra interpretation can be very challenging and needs to take into account the size distribution of the nanoparticles and agglomeration. This work suggests a Monte Carlo method for rapid fitting UV-Vis-NIR spectra using one or two size distributions starting from a dataset of precomputed spectra based on Mie theory. The proposed algorithm is tested on copper nanoparticles produced with Pulsed Laser Ablation in Liquid and on gold nanoparticles from the literature. The fitted distribution results are comparable with Transmission Electron Microscope results and, in some cases, reflect the presence of agglomeration. Full article
(This article belongs to the Special Issue MEMS in Italy 2023)
Show Figures

Figure 1

20 pages, 7654 KiB  
Article
Exploring Microphone Technologies for Digital Auscultation Devices
by Matteo Zauli, Lorenzo Mistral Peppi, Luca Di Bonaventura, Valerio Antonio Arcobelli, Alberto Spadotto, Igor Diemberger, Valerio Coppola, Sabato Mellone and Luca De Marchi
Micromachines 2023, 14(11), 2092; https://doi.org/10.3390/mi14112092 - 12 Nov 2023
Viewed by 1067
Abstract
The aim of this work is to present a preliminary study for the design of a digital auscultation system, i.e., a novel wearable device for patient chest auscultation and a digital stethoscope. The development and testing of the electronic stethoscope prototype is reported [...] Read more.
The aim of this work is to present a preliminary study for the design of a digital auscultation system, i.e., a novel wearable device for patient chest auscultation and a digital stethoscope. The development and testing of the electronic stethoscope prototype is reported with an emphasis on the description and selection of sound transduction systems and analog electronic processing. The focus on various microphone technologies, such as micro-electro-mechanical systems (MEMSs), electret condensers, and piezoelectronic diaphragms, intends to emphasize the most suitable transducer for auscultation. In addition, we report on the design and development of a digital acquisition system for the human body for sound recording by using a modular device approach in order to fit the chosen analog and digital mics. Tests were performed on a designed phantom setup, and a qualitative comparison between the sounds recorded with the newly developed acquisition device and those recorded with two commercial digital stethoscopes is reported. Full article
(This article belongs to the Special Issue MEMS in Italy 2023)
Show Figures

Figure 1

16 pages, 2599 KiB  
Article
Printing MEMS: Application of Inkjet Techniques to the Manufacturing of Inertial Accelerometers
by Roberto Bernasconi, Gabriele Pietro Invernizzi, Elisa Gallo Stampino, Riccardo Gotti, Davide Gatti and Luca Magagnin
Micromachines 2023, 14(11), 2082; https://doi.org/10.3390/mi14112082 - 10 Nov 2023
Cited by 1 | Viewed by 1054
Abstract
In the last few years, the manufacturing of microelectromechanical systems (MEMS) by means of innovative tridimensional and bidimensional printing technologies has significantly catalyzed the attention of researchers. Inkjet material deposition, in particular, can become a key enabling technology for the production of polymer-based [...] Read more.
In the last few years, the manufacturing of microelectromechanical systems (MEMS) by means of innovative tridimensional and bidimensional printing technologies has significantly catalyzed the attention of researchers. Inkjet material deposition, in particular, can become a key enabling technology for the production of polymer-based inertial sensors characterized by low cost, high manufacturing scalability and superior sensitivity. In this paper, a fully inkjet-printed polymeric accelerometer is proposed, and its manufacturing steps are described. The manufacturing challenges connected with the inkjet deposition of SU-8 as a structural material are identified and addressed, resulting in the production of a functional spring-mass sensor. A step-crosslinking process allows optimization of the final shape of the device and limits defects typical of inkjet printing. The resulting device is characterized from a morphological point of view, and its functionality is assessed in performing optical readout. The acceleration range of the optimized device is 0–0.7 g, its resolution is 2 × 10−3 g and its sensitivity is 6745 nm/g. In general, the work demonstrates the feasibility of polymeric accelerometer production via inkjet printing, and these characteristic parameters demonstrate their potential applicability in a broad range of uses requiring highly accurate acceleration measurements over small displacements. Full article
(This article belongs to the Special Issue MEMS in Italy 2023)
Show Figures

Figure 1

15 pages, 4396 KiB  
Article
Nano Hotplate Fabrication for Metal Oxide-Based Gas Sensors by Combining Electron Beam and Focused Ion Beam Lithography
by Zhifu Feng, Damiano Giubertoni, Alessandro Cian, Matteo Valt, Mario Barozzi, Andrea Gaiardo and Vincenzo Guidi
Micromachines 2023, 14(11), 2060; https://doi.org/10.3390/mi14112060 - 04 Nov 2023
Viewed by 896
Abstract
Metal oxide semiconductor (MOS) gas sensors are widely used for gas detection. Typically, the hotplate element is the key component in MOS gas sensors which provide a proper and tunable operation temperature. However, the low power efficiency of the standard hotplates greatly limits [...] Read more.
Metal oxide semiconductor (MOS) gas sensors are widely used for gas detection. Typically, the hotplate element is the key component in MOS gas sensors which provide a proper and tunable operation temperature. However, the low power efficiency of the standard hotplates greatly limits the portable application of MOS gas sensors. The miniaturization of the hotplate geometry is one of the most effective methods used to reduce its power consumption. In this work, a new method is presented, combining electron beam lithography (EBL) and focused ion beam (FIB) technologies to obtain low power consumption. EBL is used to define the low-resolution section of the electrode, and FIB technology is utilized to pattern the high-resolution part. Different Au++ ion fluences in FIBs are tested in different milling strategies. The resulting devices are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS). Furthermore, the electrical resistance of the hotplate is measured at different voltages, and the operational temperature is calculated based on the Pt temperature coefficient of resistance value. In addition, the thermal heater and electrical stability is studied at different temperatures for 110 h. Finally, the implementation of the fabricated hotplate in ZnO gas sensors is investigated using ethanol at 250 °C. Full article
(This article belongs to the Special Issue MEMS in Italy 2023)
Show Figures

Figure 1

24 pages, 848 KiB  
Article
An Optimal Shaped Sensor Array Derivation
by Marco Dibiase and Luca De Marchi
Micromachines 2023, 14(6), 1154; https://doi.org/10.3390/mi14061154 - 30 May 2023
Viewed by 1077
Abstract
In Structural Health Monitoring (SHM) applications, the Direction of Arrival (DoA) estimation of Guided Waves (GW) on sensor arrays is often used as a fundamental means to locate Acoustic Sources (AS) generated by damages growth or undesired impacts in thin-wall structures (e.g., plates [...] Read more.
In Structural Health Monitoring (SHM) applications, the Direction of Arrival (DoA) estimation of Guided Waves (GW) on sensor arrays is often used as a fundamental means to locate Acoustic Sources (AS) generated by damages growth or undesired impacts in thin-wall structures (e.g., plates or shells). In this paper, we consider the problem of designing the arrangement and shape of piezo-sensors in planar clusters in order to optimize the DoA estimation performance in noise-affected measurements. We assume that: (i) the wave propagation velocity is unknown, (ii) the DoA is estimated via the time delays of wavefronts between sensors, and (iii) the maximum value of the time delays is limited. The optimality criterion is derived basing on the Theory of Measurements. The sensor array design is so that the DoA variance is minimized in an average sense by exploiting the Calculus of Variations. In this way, considering a three-sensor cluster and a monitored angles sector of 90°, the optimal time delays–DoA relations are derived. A suitable re-shaping procedure is used to impose such relations and, at the same time, to induce the same spatial filtering effect between sensors so that the sensor acquired signals are equal except for a time-shift. In order to achieve the last aim, the sensors shape is realized by exploiting a technique called Error Diffusion, which is able to emulate piezo-load functions with continuously modulated values. In this way, the Shaped Sensors Optimal Cluster (SS-OC) is derived. A numerical assessment via Green’s functions simulations shows improved performance in DoA estimation by means of the SS-OC when compared to clusters realized with conventional piezo-disk transducers. Full article
(This article belongs to the Special Issue MEMS in Italy 2023)
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 5216 KiB  
Review
A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials
by Silvia Zecchi, Giovanni Cristoforo, Mattia Bartoli, Alberto Tagliaferro, Daniele Torsello, Carlo Rosso, Marco Boccaccio and Francesco Acerra
Micromachines 2024, 15(2), 187; https://doi.org/10.3390/mi15020187 - 26 Jan 2024
Viewed by 1515
Abstract
The interaction between matter and microwaves assumes critical significance due to the ubiquity of wireless communication technology. The selective shielding of microwaves represents the only way to achieve the control on crucial technological sectors. The implementation of microwave shielding ensures the proper functioning [...] Read more.
The interaction between matter and microwaves assumes critical significance due to the ubiquity of wireless communication technology. The selective shielding of microwaves represents the only way to achieve the control on crucial technological sectors. The implementation of microwave shielding ensures the proper functioning of electronic devices. By preventing electromagnetic pollution, shielding safeguards the integrity and optimal performances of devices, contributing to the reliability and efficiency of technological systems in various sectors and allowing the further step forwards in a safe and secure society. Nevertheless, the microwave shielding research is vast and can be quite hard to approach due to the large number and variety of studies regarding both theory and experiments. In this review, we focused our attention on the comprehensive discussion of the current state of the art of materials used for the production of electromagnetic interference shielding composites, with the aim of providing a solid reference point to explore this research field. Full article
(This article belongs to the Special Issue MEMS in Italy 2023)
Show Figures

Figure 1

Back to TopTop