Advances in Oligosaccharides and Polysaccharide Modifications in Marine Bioresources

A special issue of Marine Drugs (ISSN 1660-3397).

Deadline for manuscript submissions: closed (31 January 2023) | Viewed by 26814

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
Interests: enzymatic character of marine organisms and microorganisms; exploitation of utilization of marine algae; development of genome editing method for marine algae
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Fisheries Sciences, Hokkaido University Hakodate, Hokkaido, Japan
Interests: red algae; marine invertebrates; phycoerythrin; xyloorigosaccharide; marine enzymes; marine collagen; chloroplast DNA; antihypertension; prebiotics; antioxidation; antidiabetes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Food Science and light Industry, Nanjing Tech University, Nanjing, China
Interests: discovering, enzymatic and structural characterization; novel marine polysaccharide-degrading enzymes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Due to global climate change, environmental issues have become more conscious. Seaweeds play a major role in blue carbon, which fixes carbon to the ocean by taking in carbon dioxide through photosynthesis and producing polysaccharides. In addition to environmental problems, marine polysaccharides have various modifying groups and have been found to have different functionality from land plants. Marine polysaccharides have been used in foods and medicines. Recently, novel biocatalysis of polysaccharide-relating enzymes has been discovered. As a result, the functionality of oligosaccharides from marine polysaccharides has been clarified, e.g., health functionality such as anti-cancer, anti-inflammatory effect, intestinal regulation and antioxidant activity. This Special Issue aims to accumulate the knowledge of preparation, function, structure, and application of bioactive oligosaccharides and polysaccharides-relating enzymes from marine organisms. This Special Issue aims to contribute to the achievement of multiple goals of Sustainable Development Goals (SDGs) (No. 2, 3, 12, 14), and we would like to invite scientists to submit their latest research findings in this field. Comprehensive review papers are also welcome.

Dr. Yuya Kumagai
Prof. Dr. Hideki Kishimura
Dr. Benwei Zhu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine biotechnology
  • marine organism
  • enzyme kinetics
  • crystal structure
  • biocatalysis
  • polysaccharide
  • carbohydrate recognition

Related Special Issue

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 2359 KiB  
Article
SPR Sensor-Based Analysis of the Inhibition of Marine Sulfated Glycans on Interactions between Monkeypox Virus Proteins and Glycosaminoglycans
by Peng He, Deling Shi, Yunran Li, Ke Xia, Seon Beom Kim, Rohini Dwivedi, Marwa Farrag, Vitor H. Pomin, Robert J. Linhardt, Jonathan S. Dordick and Fuming Zhang
Mar. Drugs 2023, 21(5), 264; https://doi.org/10.3390/md21050264 - 25 Apr 2023
Cited by 2 | Viewed by 1930
Abstract
Sulfated glycans from marine organisms are excellent sources of naturally occurring glycosaminoglycan (GAG) mimetics that demonstrate therapeutic activities, such as antiviral/microbial infection, anticoagulant, anticancer, and anti-inflammation activities. Many viruses use the heparan sulfate (HS) GAG on the surface of host cells as co-receptors [...] Read more.
Sulfated glycans from marine organisms are excellent sources of naturally occurring glycosaminoglycan (GAG) mimetics that demonstrate therapeutic activities, such as antiviral/microbial infection, anticoagulant, anticancer, and anti-inflammation activities. Many viruses use the heparan sulfate (HS) GAG on the surface of host cells as co-receptors for attachment and initiating cell entry. Therefore, virion–HS interactions have been targeted to develop broad-spectrum antiviral therapeutics. Here we report the potential anti-monkeypox virus (MPXV) activities of eight defined marine sulfated glycans, three fucosylated chondroitin sulfates, and three sulfated fucans extracted from the sea cucumber species Isostichopus badionotusHolothuria floridana, and Pentacta pygmaea, and the sea urchin Lytechinus variegatus, as well as two chemically desulfated derivatives. The inhibitions of these marine sulfated glycans on MPXV A29 and A35 protein–heparin interactions were evaluated using surface plasmon resonance (SPR). These results demonstrated that the viral surface proteins of MPXV A29 and A35 bound to heparin, which is a highly sulfated HS, and sulfated glycans from sea cucumbers showed strong inhibition of MPXV A29 and A35 interactions. The study of molecular interactions between viral proteins and host cell GAGs is important in developing therapeutics for the prevention and treatment of MPXV. Full article
Show Figures

Figure 1

19 pages, 5214 KiB  
Article
Comparative Analyses of Fucoidans from South African Brown Seaweeds That Inhibit Adhesion, Migration, and Long-Term Survival of Colorectal Cancer Cells
by Blessing Mabate, Chantal Désirée Daub, Brett Ivan Pletschke and Adrienne Lesley Edkins
Mar. Drugs 2023, 21(4), 203; https://doi.org/10.3390/md21040203 - 24 Mar 2023
Cited by 3 | Viewed by 1622
Abstract
Human colorectal cancer (CRC) is a recurrent, deadly malignant tumour with a high incidence. The incidence of CRC is of increasing alarm in highly developed countries, as well as in middle to low-income countries, posing a significant global health challenge. Therefore, novel management [...] Read more.
Human colorectal cancer (CRC) is a recurrent, deadly malignant tumour with a high incidence. The incidence of CRC is of increasing alarm in highly developed countries, as well as in middle to low-income countries, posing a significant global health challenge. Therefore, novel management and prevention strategies are vital in reducing the morbidity and mortality of CRC. Fucoidans from South African seaweeds were hot water extracted and structurally characterised using FTIR, NMR and TGA. The fucoidans were chemically characterised to analyse their composition. In addition, the anti-cancer properties of the fucoidans on human HCT116 colorectal cells were investigated. The effect of fucoidans on HCT116 cell viability was explored using the resazurin assay. Thereafter, the anti-colony formation potential of fucoidans was explored. The potency of fucoidans on the 2D and 3D migration of HCT116 cells was investigated by wound healing assay and spheroid migration assays, respectively. Lastly, the anti-cell adhesion potential of fucoidans on HCT116 cells was also investigated. Our study found that Ecklonia sp. Fucoidans had a higher carbohydrate content and lower sulphate content than Sargassum elegans and commercial Fucus vesiculosus fucoidans. The fucoidans prevented 2D and 3D migration of HCT116 colorectal cancer cells to 80% at a fucoidan concentration of 100 µg/mL. This concentration of fucoidans also significantly inhibited HCT116 cell adhesion by 40%. Moreover, some fucoidan extracts hindered long-term colony formation by HCT116 cancer cells. In summary, the characterised fucoidan extracts demonstrated promising anti-cancer activities in vitro, and this warrants their further analyses in pre-clinical and clinical studies. Full article
Show Figures

Graphical abstract

15 pages, 2021 KiB  
Article
Chitooligosaccharides Derivatives Protect ARPE-19 Cells against Acrolein-Induced Oxidative Injury
by Cheng Yang, Rongrong Yang, Ming Gu, Jiejie Hao, Shixin Wang and Chunxia Li
Mar. Drugs 2023, 21(3), 137; https://doi.org/10.3390/md21030137 - 22 Feb 2023
Cited by 3 | Viewed by 1526
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly. The progression of AMD is closely related to oxidative stress in the retinal pigment epithelium (RPE). Here, a series of chitosan oligosaccharides (COSs) and N-acetylated derivatives (NACOSs) were [...] Read more.
Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly. The progression of AMD is closely related to oxidative stress in the retinal pigment epithelium (RPE). Here, a series of chitosan oligosaccharides (COSs) and N-acetylated derivatives (NACOSs) were prepared, and their protective effects on an acrolein-induced oxidative stress model of ARPE-19 were explored using the MTT assay. The results showed that COSs and NACOs alleviated APRE-19 cell damage induced by acrolein in a concentration-dependent manner. Among these, chitopentaose (COS–5) and its N-acetylated derivative (N–5) showed the best protective activity. Pretreatment with COS–5 or N–5 could reduce intracellular and mitochondrial reactive oxygen species (ROS) production induced by acrolein, increase mitochondrial membrane potential, GSH level, and the enzymatic activity of SOD and GSH-Px. Further study indicated that N–5 increased the level of nuclear Nrf2 and the expression of downstream antioxidant enzymes. This study revealed that COSs and NACOSs reduced the degeneration and apoptosis of retinal pigment epithelial cells by enhancing antioxidant capacity, suggesting that they have the potential to be developed into novel protective agents for AMD treatment and prevention. Full article
Show Figures

Figure 1

10 pages, 2474 KiB  
Article
Identification and Characterization of a New Cold-Adapted and Alkaline Alginate Lyase TsAly7A from Thalassomonas sp. LD5 Produces Alginate Oligosaccharides with High Degree of Polymerization
by Chengying Yin, Jiaxia Sun, Hainan Wang, Wengong Yu and Feng Han
Mar. Drugs 2023, 21(1), 6; https://doi.org/10.3390/md21010006 - 22 Dec 2022
Cited by 2 | Viewed by 1559
Abstract
Alginate oligosaccharides (AOS) and their derivatives become popular due to their favorable biological activity, and the key to producing functional AOS is to find efficient alginate lyases. This study showed one alginate lyase TsAly7A found in Thalassomonas sp. LD5, which was predicted to [...] Read more.
Alginate oligosaccharides (AOS) and their derivatives become popular due to their favorable biological activity, and the key to producing functional AOS is to find efficient alginate lyases. This study showed one alginate lyase TsAly7A found in Thalassomonas sp. LD5, which was predicted to have excellent industrial properties. Bioinformatics analysis and enzymatic properties of recombinant TsAly7A (rTsAly7A) were investigated. TsAly7A belonged to the fifth subfamily of polysaccharide lyase family 7 (PL7). The optimal temperature and pH of rTsAly7A was 30 °C and 9.1 in Glycine-NaOH buffer, respectively. The pH stability of rTsAly7A under alkaline conditions was pretty good and it can remain at above 90% of the initial activity at pH 8.9 in Glycine-NaOH buffer for 12 h. In the presence of 100 mM NaCl, rTsAly7A showed the highest activity, while in the absence of NaCl, 50% of the highest activity was observed. The rTsAly7A was an endo-type alginate lyase, and its end-products of alginate degradation were unsaturated oligosaccharides (degree of polymerization 2–6). Collectively, the rTsAly7A may be a good industrial production tool for producing AOS with high degree of polymerization. Full article
Show Figures

Figure 1

20 pages, 3600 KiB  
Article
Structural and Biochemical Analysis Reveals Catalytic Mechanism of Fucoidan Lyase from Flavobacterium sp. SA-0082
by Juanjuan Wang, Zebin Liu, Xiaowei Pan, Ning Wang, Legong Li, Yuguang Du, Jianjun Li and Mei Li
Mar. Drugs 2022, 20(8), 533; https://doi.org/10.3390/md20080533 - 20 Aug 2022
Cited by 2 | Viewed by 1916
Abstract
Fucoidans represent a type of polyanionic fucose-containing sulfated polysaccharides (FCSPs) that are cleaved by fucoidan-degrading enzymes, producing low-molecular-weight fucoidans with multiple biological activities suitable for pharmacological use. Most of the reported fucoidan-degrading enzymes are glycoside hydrolases, which have been well studied for their [...] Read more.
Fucoidans represent a type of polyanionic fucose-containing sulfated polysaccharides (FCSPs) that are cleaved by fucoidan-degrading enzymes, producing low-molecular-weight fucoidans with multiple biological activities suitable for pharmacological use. Most of the reported fucoidan-degrading enzymes are glycoside hydrolases, which have been well studied for their structures and catalytic mechanisms. Little is known, however, about the rarer fucoidan lyases, primarily due to the lack of structural information. FdlA from Flavobacterium sp. SA-0082 is an endo-type fucoidan-degrading enzyme that cleaves the sulfated fuco-glucuronomannan (SFGM) through a lytic mechanism. Here, we report nine crystal structures of the catalytic N-terminal domain of FdlA (FdlA-NTD), in both its wild type (WT) and mutant forms, at resolutions ranging from 1.30 to 2.25 Å. We show that the FdlA-NTD adopts a right-handed parallel β-helix fold, and possesses a substrate binding site composed of a long groove and a unique alkaline pocket. Our structural, biochemical, and enzymological analyses strongly suggest that FdlA-NTD utilizes catalytic residues different from other β-helix polysaccharide lyases, potentially representing a novel polysaccharide lyase family. Full article
Show Figures

Figure 1

15 pages, 3831 KiB  
Article
Biochemical Characterization and Elucidation of the Hybrid Action Mode of a New Psychrophilic and Cold-Tolerant Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides
by Shengsheng Cao, Li Li, Benwei Zhu and Zhong Yao
Mar. Drugs 2022, 20(8), 506; https://doi.org/10.3390/md20080506 - 05 Aug 2022
Cited by 8 | Viewed by 1823
Abstract
Alginate lyases with unique biochemical properties have irreplaceable value in food and biotechnology industries. Herein, the first new hybrid action mode Thalassotalea algicola-derived alginate lyase gene (TAPL7A) with both psychrophilic and cold-tolerance was cloned and expressed heterologously in E. coli. With [...] Read more.
Alginate lyases with unique biochemical properties have irreplaceable value in food and biotechnology industries. Herein, the first new hybrid action mode Thalassotalea algicola-derived alginate lyase gene (TAPL7A) with both psychrophilic and cold-tolerance was cloned and expressed heterologously in E. coli. With the highest sequence identity (43%) to the exolytic alginate lyase AlyA5 obtained from Zobellia galactanivorans, TAPL7A was identified as a new polysaccharide lyases family 7 (PL7) alginate lyase. TAPL7A has broad substrate tolerance with specific activities of 4186.1 U/mg, 2494.8 U/mg, 2314.9 U/mg for polyM, polyG, and sodium alginate, respectively. Biochemical characterization of TAPL7A showed optimal activity at 15 °C, pH 8.0. Interestingly, TAPL7A exhibits both extreme psychrophilic and cold tolerance, which other cold-adapted alginate lyase do not possess. In a wide range of 5–30 °C, the activity can reach 80–100%, and the residual activity of more than 70% can still be maintained after 1 h of incubation. Product analysis showed that TAPL7A adopts a hybrid endo/exo-mode on all three substrates. FPLC and ESI-MS confirmed that the final products of TAPL7A are oligosaccharides with degrees of polymerization (Dps) of 1–2. This study provides excellent alginate lyase candidates for low-temperature environmental applications in food, agriculture, medicine and other industries. Full article
Show Figures

Figure 1

8 pages, 1907 KiB  
Article
Anti-Inflammatory Effect of Sulfated Polysaccharides Isolated from Codium fragile In Vitro in RAW 264.7 Macrophages and In Vivo in Zebrafish
by Lei Wang, Jun-Geon Je, Caoxing Huang, Jae-Young Oh, Xiaoting Fu, Kaiqiang Wang, Ginnae Ahn, Jiachao Xu, Xin Gao and You-Jin Jeon
Mar. Drugs 2022, 20(6), 391; https://doi.org/10.3390/md20060391 - 13 Jun 2022
Cited by 12 | Viewed by 2491
Abstract
In this study, the anti-inflammatory activity of sulfated polysaccharides isolated from the green seaweed Codium fragile (CFCE-PS) was investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results demonstrated that CFCE-PS significantly increased the viability of LPS-induced RAW 264.7 cells in a [...] Read more.
In this study, the anti-inflammatory activity of sulfated polysaccharides isolated from the green seaweed Codium fragile (CFCE-PS) was investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results demonstrated that CFCE-PS significantly increased the viability of LPS-induced RAW 264.7 cells in a concentration-dependent manner. CFCE-PS remarkably and concentration-dependently reduced the levels of inflammatory molecules including prostaglandin E2, nitric oxide (NO), interleukin-1 beta, tumor necrosis factor-alpha, and interleukin-6 in LPS-stimulated RAW 264.7 cells. In addition, in vivo test results indicated that CFCE-PS effectively reduced reactive oxygen species, cell death, and NO levels in LPS-stimulated zebrafish. Thus, these results indicate that CFCE-PS possesses in vitro and in vivo anti-inflammatory activities and suggest it is a potential ingredient in the functional food and pharmaceutical industries. Full article
Show Figures

Figure 1

11 pages, 1820 KiB  
Article
Multi-Step Enzymatic Production and Purification of 2-Keto-3-Deoxy-Galactonate from Red-Macroalgae-Derived Agarose
by Sora Yu, So Young Park, Dong Hyun Kim, Eun Ju Yun and Kyoung Heon Kim
Mar. Drugs 2022, 20(5), 288; https://doi.org/10.3390/md20050288 - 25 Apr 2022
Viewed by 2166
Abstract
2-keto-3-deoxy sugar acids, which have potential as precursors in medicinal compound production, have gained attention in various fields. Among these acids, 2-keto-3-deoxy-l-galactonate (KDGal) has been biologically produced from D-galacturonate originating from plant-derived pectin. KDGal is also found in the catabolic pathway [...] Read more.
2-keto-3-deoxy sugar acids, which have potential as precursors in medicinal compound production, have gained attention in various fields. Among these acids, 2-keto-3-deoxy-l-galactonate (KDGal) has been biologically produced from D-galacturonate originating from plant-derived pectin. KDGal is also found in the catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red-algae-derived agarose. AHG is converted to 3,6-anhydrogalactonate by AHG dehydrogenase and subsequently isomerized to KDGal by 3,6-anhydrogalactonate cycloisomerase. Therefore, we used the above-described pathway to produce KDGal from agarose. Agarose was depolymerized to AHG and to agarotriose (AgaDP3) and agaropentaose (AgaDP5), both of which have significantly higher molecular weights than AHG. When only AHG was converted to KDGal, AgaDP3 and AgaDP5 remained unreacted. Finally, KDGal was effectively purified from the enzymatic products by size-exclusion chromatography based on the differences in molecular weights. These results show that KDGal can be enzymatically produced and purified from agarose for use as a precursor to high-value products. Full article
Show Figures

Graphical abstract

14 pages, 1843 KiB  
Article
Characterization of an Unknown Region Linked to the Glycoside Hydrolase Family 17 β-1,3-Glucanase of Vibrio vulnificus Reveals a Novel Glucan-Binding Domain
by Yuya Kumagai, Hideki Kishimura, Weeranuch Lang, Takayoshi Tagami, Masayuki Okuyama and Atsuo Kimura
Mar. Drugs 2022, 20(4), 250; https://doi.org/10.3390/md20040250 - 31 Mar 2022
Cited by 4 | Viewed by 2566
Abstract
The glycoside hydrolase family 17 β-1,3-glucanase of Vibrio vulnificus (VvGH17) has two unknown regions in the N- and C-termini. Here, we characterized these domains by preparing mutant enzymes. VvGH17 demonstrated hydrolytic activity of β-(1→3)-glucan, mainly producing laminaribiose, but not of β-(1→3)/β-(1→4)-glucan. The C-terminal-truncated [...] Read more.
The glycoside hydrolase family 17 β-1,3-glucanase of Vibrio vulnificus (VvGH17) has two unknown regions in the N- and C-termini. Here, we characterized these domains by preparing mutant enzymes. VvGH17 demonstrated hydrolytic activity of β-(1→3)-glucan, mainly producing laminaribiose, but not of β-(1→3)/β-(1→4)-glucan. The C-terminal-truncated mutants (ΔC466 and ΔC441) showed decreased activity, approximately one-third of that of the WT, and ΔC415 lost almost all activity. An analysis using affinity gel containing laminarin or barley β-glucan revealed a shift in the mobility of the ΔC466, ΔC441, and ΔC415 mutants compared to the WT. Tryptophan residues showed a strong affinity for carbohydrates. Three of four point-mutations of the tryptophan in the C-terminus (W472A, W499A, and W542A) showed a reduction in binding ability to laminarin and barley β-glucan. The C-terminus was predicted to have a β-sandwich structure, and three tryptophan residues (Trp472, Trp499, and Trp542) constituted a putative substrate-binding cave. Linker and substrate-binding functions were assigned to the C-terminus. The N-terminal-truncated mutants also showed decreased activity. The WT formed a trimer, while the N-terminal truncations formed monomers, indicating that the N-terminus contributed to the multimeric form of VvGH17. The results of this study are useful for understanding the structure and the function of GH17 β-1,3-glucanases. Full article
Show Figures

Figure 1

20 pages, 3018 KiB  
Article
Identification and Characterization of Three Chitinases with Potential in Direct Conversion of Crystalline Chitin into N,N′-diacetylchitobiose
by Xue-Bing Ren, Yan-Ru Dang, Sha-Sha Liu, Ke-Xuan Huang, Qi-Long Qin, Xiu-Lan Chen, Yu-Zhong Zhang, Yan-Jun Wang and Ping-Yi Li
Mar. Drugs 2022, 20(3), 165; https://doi.org/10.3390/md20030165 - 24 Feb 2022
Cited by 14 | Viewed by 3017
Abstract
Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. [...] Read more.
Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. Here, we characterize three chitinases, which were identified from the marine bacterium Pseudoalteromonas flavipulchra DSM 14401T, with an ability to degrade crystalline chitin into (GlcNAc)2 (N,N’-diacetylchitobiose). Strain DSM 14401 can degrade the crystalline α-chitin in the medium to provide nutrients for growth. Genome and secretome analyses indicate that this strain secretes six chitinolytic enzymes, among which chitinases Chia4287, Chib0431, and Chib0434 have higher abundance than the others, suggesting their importance in crystalline α-chitin degradation. These three chitinases were heterologously expressed, purified, and characterized. They are all active on crystalline α-chitin, with temperature optima of 45–50 °C and pH optima of 7.0–7.5. They are all stable at 40 °C and in the pH range of 5.0–11.0. Moreover, they all have excellent salt tolerance, retaining more than 92% activity after incubation in 5 M NaCl for 10 h at 4 °C. When acting on crystalline α-chitin, the main products of the three chitinases are all (GlcNAc)2, which suggests that chitinases Chia4287, Chib0431, and Chib0434 likely have potential in direct conversion of crystalline chitin into (GlcNAc)2. Full article
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2256 KiB  
Review
Ulva (Enteromorpha) Polysaccharides and Oligosaccharides: A Potential Functional Food Source from Green-Tide-Forming Macroalgae
by Limin Ning, Zhong Yao and Benwei Zhu
Mar. Drugs 2022, 20(3), 202; https://doi.org/10.3390/md20030202 - 10 Mar 2022
Cited by 17 | Viewed by 4984
Abstract
The high-valued utilization of Ulva (previously known as Enteromorpha) bioresources has drawn increasing attention due to the periodic blooms of world-wide green tide. The polysaccharide is the main functional component of Ulva and exhibits various physiological activities. The Ulva oligosaccharide as the [...] Read more.
The high-valued utilization of Ulva (previously known as Enteromorpha) bioresources has drawn increasing attention due to the periodic blooms of world-wide green tide. The polysaccharide is the main functional component of Ulva and exhibits various physiological activities. The Ulva oligosaccharide as the degradation product of polysaccharide not only possesses some obvious activities, but also possesses excellent solubility and bioavailability. Both Ulva polysaccharides and oligosaccharides hold promising potential in the food industry as new functional foods or food additives. Studies on Ulva polysaccharides and oligosaccharides are increasing and have been the focus of the marine bioresources field. However, the comprehensive review of this topic is still rare and do not cover the recent advances of the structure, isolation, preparation, activity and applications of Ulva polysaccharides and oligosaccharides. This review systematically summarizes and discusses the recent advances of chemical composition, extraction, purification, structure, and activity of Ulva polysaccharides as well as oligosaccharides. In addition, the potential applications as new functional food and food additives have also been considered, and these will definitely expand the applications of Ulva oligosaccharides in the food and medical fields. Full article
Show Figures

Graphical abstract

Back to TopTop