Special Issue "High-Performance Metal Additive Manufacturing"

A special issue of Journal of Manufacturing and Materials Processing (ISSN 2504-4494).

Deadline for manuscript submissions: 31 March 2024 | Viewed by 1254

Special Issue Editors

Dr. Hamed Asgari
E-Mail Website
Guest Editor
Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB, Canada
Interests: metal additive manufacturing; texture and anisotropy; dynamic mechanical behaviour; materials characterization; light alloys
Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
Interests: additive manufacturing; cold spray; PSPP linkages; scientific machine learning; high entropy alloys
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Metal additive manufacturing (AM), also known as 3D printing (3DP), has emerged as a transformative technology that revolutionizes traditional manufacturing processes. By enabling the direct fabrication of complex metal parts from digital designs, additive manufacturing offers unprecedented freedom in design and manufacturing flexibility. In this Special Issue, we seek to present a comprehensive collection of research articles, reviews, and case studies that highlight the state-of-the-art techniques, novel materials, in/ex situ materials characterization, process optimization, modelling and simulation, and applications in metal AM, with a specific focus on achieving high-performance outcomes for strategic sectors, including the aerospace, marine, automotive and energy industries. We encourage submissions that cover a wide range of topics, including, but not limited to, the following:

  • Design methodologies for high-performance metal parts using AM techniques.
  • Advanced metal powders and alloys tailored for AM, specifically metal matrix composites and smart alloys.
  • Process optimization and control strategies to enhance mechanical, chemical and physical properties and surface finish of additively manufactured parts.
  • Novel post-processing techniques for improving the performance of additively manufactured metal components, particularly in extreme environments.
  • Real-world applications of high-performance metal AM in diverse sectors.

By assembling this collection of contributions, we aim to foster collaboration, knowledge exchange, and advancements in metal additive manufacturing. I invite researchers from academia and industry to share their expertise, innovative ideas, and exciting developments in this exciting field. Together, we can push the boundaries of high-performance metal additive manufacturing and pave the way for its widespread adoption.

Dr. Hamed Asgari
Dr. Elham Mirkoohi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Manufacturing and Materials Processing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal additive manufacturing
  • process optimization
  • quality control
  • materials characterization
  • powder processing
  • design for additive manufacturing

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 12892 KiB  
Article
Forging Treatment Realized the Isotropic Microstructure and Properties of Selective Laser Melting GH3536
J. Manuf. Mater. Process. 2023, 7(6), 213; https://doi.org/10.3390/jmmp7060213 - 29 Nov 2023
Viewed by 241
Abstract
The anisotropy of mechanical properties in SLMed alloy is very important. In order to realize the homogeneity of the microstructure and mechanical properties of GH3536 alloy prepared by selective laser melting (SLM), the as-deposited samples were treated by hot isostatic pressing and then [...] Read more.
The anisotropy of mechanical properties in SLMed alloy is very important. In order to realize the homogeneity of the microstructure and mechanical properties of GH3536 alloy prepared by selective laser melting (SLM), the as-deposited samples were treated by hot isostatic pressing and then forged at different temperatures. The microstructure, grain size, room- and high- temperature tensile properties, and endurance properties of the samples were studied. The results showed that the microstructure of the sample was mainly equiaxed austenite phase, and granular carbides were precipitated inside the grains after forging treatment, resulting in the anisotropy of the sample almost disappearing. The grain boundary phase difference distribution was most concentrated at 60°. The grain size was less than 10 μm, and a large number of twins were formed. With the increase in forging temperature, the yield strength, tensile strength, and contraction of area of the samples changed little, and the properties parallel to the z-axis (parallel samples) and vertical to the z-axis (vertical samples) were almost the same. In particular, the yield strength, tensile strength, and contraction of area in the transverse and vertical samples were almost at the same level. Judging from the elongation after fracture and the contraction of area, the properties of the samples showed characteristics of anisotropy after a high temperature endurance test. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

15 pages, 7676 KiB  
Article
Experimental Analysis and Spatial Component Impact of the Inert Cross Flow in Open-Architecture Laser Powder Bed Fusion
J. Manuf. Mater. Process. 2023, 7(4), 143; https://doi.org/10.3390/jmmp7040143 - 07 Aug 2023
Viewed by 755
Abstract
Laser-based powder bed fusion is an additive manufacturing process in which a high-power laser melts a thin layer of metal powder layer by layer to yield a three-dimensional object. An inert gas must remove process byproducts formed during laser processing to ensure a [...] Read more.
Laser-based powder bed fusion is an additive manufacturing process in which a high-power laser melts a thin layer of metal powder layer by layer to yield a three-dimensional object. An inert gas must remove process byproducts formed during laser processing to ensure a stable and consistent process. The process byproducts include a plasma plume and spatter particles. An NC sensor gantry is installed inside a bespoke open-architecture laser-based powder bed fusion system to experimentally characterize the gas velocity throughout the processing area. The flow maps are compared to manufactured samples, where the relative density and melt pools are analyzed, seeking a potential correlation between local gas flow conditions and the components. The results show a correlation between low gas flow velocities and increased porosity, leading to lower part quality. Local flow conditions across the build plate also directly impact components, highlighting the importance of optimizing the gas flow subsystem. The experimental flow analysis method enables optimization of the gas flow inlet geometry, and the data may be used to calibrate the computational modeling of the process. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop