Topical Collection "Biology and Control of the Invasive Red-Necked Longhorn Beetle Aromia bungii"

A topical collection in Insects (ISSN 2075-4450). This collection belongs to the section "Insect Pest and Vector Management".

Viewed by 13735

Editors

Department of Forest Entomology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
Interests: pest management; chemical control; chemical ecology; invasive species; social insects; wood-boring beetles
Institute for Sustainable Plant Protection of National Research Council of Italy, P. le Enrico Fermi 1, 80055 Portici, Naples, Italy
Interests: invasive organisms; biological control; molecular biology; systematics and phylogenetics; symbiotic bacteria
Department of Forest Entomology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
Interests: forest entomology; molecular ecology; wood-boring insects

Topical Collection Information

Dear Colleagues,

The red-necked longhorn beetle Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), native to continental Asia and surrounding areas, has in the last decade begun to expand its distribution area to other parts of the world. This wood-boring pest is a serious threat to stone fruit trees such as peach, plum, and cherry. Understanding its biology and developing effective countermeasures are crucial to stopping the damage and preventing further spread. This Topical Collection aims to collect, from both native and introduced ranges, recent findings on the biology and control of A. bungii. Topics of particular interest include ecology, physiology, and behavior; protection methods and planning; early detection methods; modeling; molecular ecology; and other kinds of data that may be useful to overcoming this new challenge in agriculture.

Dr. Eiriki Sunamura
Dr. Francesco Nugnes
Dr. Etsuko Shoda-Kagaya
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Aromia bungii
  • invasive species
  • wood-boring insects
  • biology
  • ecology
  • behavior
  • integrated pest management
  • chemical control
  • biological control
  • physical control

Published Papers (7 papers)

2022

Jump to: 2021

Article
Chemical Compounds Emitted from Mentha spicata Repel Aromia bungii Females
Insects 2022, 13(3), 244; https://doi.org/10.3390/insects13030244 - 28 Feb 2022
Cited by 2 | Viewed by 1570
Abstract
Aromia bungii (Coleoptera: Cerambycidae) is an economically important wood-boring insect pest of stone fruit trees, particularly Prunus persica, in China. It has entered Japan and several European countries as an invasive species in recent years. It is difficult to control because of [...] Read more.
Aromia bungii (Coleoptera: Cerambycidae) is an economically important wood-boring insect pest of stone fruit trees, particularly Prunus persica, in China. It has entered Japan and several European countries as an invasive species in recent years. It is difficult to control because of the cryptic feeding behaviour of larvae beneath the bark. Identification of repellent constituents from non-host plants has potential for use in management strategies against this beetle. Mentha spicata is cultivated extensively in Hebei Province (China) as a medicinal plant. Firstly, antennal responses of female A. bungii to M. spicata volatiles were evaluated by coupled gas chromatography-electroantennograms (GC-EAD), and then the EAD-active components were tested in semi-field trials. The results showed that A. bungii females were significantly repelled by myrcene, (S)-(+)-carvone, (E)-β-caryophyllene, and borneol compared with the control. The presence of myrcene (100 µL; 90% purity), (S)-(+)-carvone (200 µL; 96% purity), (E)-β-caryophyllene (500 µL; 98.5% purity), and borneol (800 µL; 80% purity) significantly reduced the perching rates of A. bungii females on both peach logs and leaves. Considering cost and commercial availability, we suggest that myrcene, (S)-(+)-carvone, and (E)-β-caryophyllene could be promising repellents against A. bungii females in the field. Full article
Show Figures

Figure 1

Article
Seasonal Prevalence of the Invasive Longhorn Beetle Aromia bungii in Osaka Prefecture, Japan
Insects 2022, 13(3), 222; https://doi.org/10.3390/insects13030222 - 23 Feb 2022
Viewed by 1305
Abstract
A thorough understanding of the seasonal prevalence of invasive pests in newly invaded regions is key for establishing an appropriate and localized control plan for their successful eradication. In this study, we investigated the seasonal prevalence of the invasive longhorn beetle Aromia bungii [...] Read more.
A thorough understanding of the seasonal prevalence of invasive pests in newly invaded regions is key for establishing an appropriate and localized control plan for their successful eradication. In this study, we investigated the seasonal prevalence of the invasive longhorn beetle Aromia bungii (Coleoptera: Cerambycidae) in Osaka Prefecture, Japan. We determined the number of adult beetles sighted on host trees more than once a week from late May or early June to late August for 3 years at three study sites (one site from 2019–2021 and two sites from 2020–2021). The appearance period of A. bungii adults spanned over 2 months (June–August), and peak sighting in the field occurred in late June; the adults were more abundant in the early phase of their seasonal prevalence (around the peak dates) and almost disappeared by August. The number of adult beetles emerging from A. bungii-infested trees at one study site was surveyed daily in 2021. This survey showed a short-span adult emergence period: Approximately 1 month from the first emergence day, supporting the idea of the concentration of adult abundance in the early phase. These results will help to establish a timely pest-control plan for A. bungii in Osaka Prefecture. Full article
Show Figures

Figure 1

Article
Genetic Differences among Established Populations of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) in Japan: Suggestion of Multiple Introductions
Insects 2022, 13(2), 217; https://doi.org/10.3390/insects13020217 - 21 Feb 2022
Cited by 1 | Viewed by 1659
Abstract
Aromia bungii (Faldermann) (Coleoptera: Cerambycidae) is an invasive pest, damaging Rosaceae trees (particularly Prunus) in Japan and Europe. The establishment of this beetle in Japan was first detected in 2012, and subsequently, it has rapidly expanded its distribution. Currently, Japanese populations of [...] Read more.
Aromia bungii (Faldermann) (Coleoptera: Cerambycidae) is an invasive pest, damaging Rosaceae trees (particularly Prunus) in Japan and Europe. The establishment of this beetle in Japan was first detected in 2012, and subsequently, it has rapidly expanded its distribution. Currently, Japanese populations of A. bungii are widely distributed in six non-contiguous regions. In this study, we compared the nucleotide sequences of mitochondrial cytochrome oxidase subunit 1 of the populations in these six regions in Japan to examine whether multiple introductions or human-mediated long-distance dispersal have contributed to the non-contiguous distribution of A. bungii. Seven haplotypes were detected from Japanese populations, and one of these was identical to a sequence deposited from China. One to two haplotypes were detected in each region, suggesting a genetic bottleneck. Detected haplotypes differed between introduced regions, although two regions shared a single haplotype. These results suggest that multiple independent introductions of A. bungii have contributed to its non-contiguous distribution in Japan. Quarantine measures for wood-packing materials in trade need to be strengthened to prevent the establishment of further populations of A. bungii. Full article
Show Figures

Figure 1

Article
Comparison of the Ecological Traits and Boring Densities of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) in Two Host Tree Species
Insects 2022, 13(2), 151; https://doi.org/10.3390/insects13020151 - 30 Jan 2022
Viewed by 1738
Abstract
We investigated the ecological traits of emerging adults and the boring density in Aromia bungii-infested flowering cherry (Cerasus × yedoensis ‘Somei-yoshino’) and peach (Prunus persica) trees to evaluate their suitability as food resources for A. bungii, and their [...] Read more.
We investigated the ecological traits of emerging adults and the boring density in Aromia bungii-infested flowering cherry (Cerasus × yedoensis ‘Somei-yoshino’) and peach (Prunus persica) trees to evaluate their suitability as food resources for A. bungii, and their vulnerability to infestation. The number of adults per m3 that emerged from P. persica was 10-times larger than from C. × yedoensis, and the numbers of emergence holes, entrance holes, and pupal chambers were also larger in P. persica logs. The lifetime fecundity of adults that emerged from P. persica was also higher. Elytral length, sex ratios, and adult lifespans did not differ between the two host trees. Our results indicate that peach trees provide more suitable conditions than do flowering cherry trees for A. bungii larvae. Although flowering cherry trees, primarily C. × yedoensis, which are currently grown as street or ornamental trees in Japan, have been more severely affected by A. bungii to date, the greater risk in the long term is to P. persica, an agricultural species in the main producing areas surrounding the Kanto region. Full article
Show Figures

Figure 1

Article
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome
Insects 2022, 13(1), 96; https://doi.org/10.3390/insects13010096 - 14 Jan 2022
Cited by 5 | Viewed by 1374
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, [...] Read more.
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level. Full article
Show Figures

Figure 1

Article
Characteristics of Trees Infested by the Invasive Primary Wood-Borer Aromia bungii (Coleoptera: Cerambycidae)
Insects 2022, 13(1), 54; https://doi.org/10.3390/insects13010054 - 04 Jan 2022
Viewed by 1604
Abstract
The expanding distribution and tree damage of the invasive, primary wood-borer Aromia bungii (Coleoptera: Cerambycidae), which kills trees of the Rosaceae family, is a problem in intruded areas. However, the tree characteristics associated with infestation by A. bungii, which are useful for [...] Read more.
The expanding distribution and tree damage of the invasive, primary wood-borer Aromia bungii (Coleoptera: Cerambycidae), which kills trees of the Rosaceae family, is a problem in intruded areas. However, the tree characteristics associated with infestation by A. bungii, which are useful for early detection or prioritizing preventive measures, are not well examined. We investigated the presence or absence of tree damage (response variable) in pre- and post- surveys along with tree characteristics (four explanatory variables; bark roughness, size, species, and vigor) on monitoring trees in uninvaded sites (survey for the first trees to be damaged) and already invaded sites (survey for the next trees to be damaged). We evaluated the variables using generalized linear mixed models for each site (i.e., a first trees model and a next trees model). Three tree characteristics (bark roughness, size, and vigor) were included as explanatory variables in both best models, indicating that trees with rough surface bark, large in size, and weakened conditions were more susceptible to A. bungii infestation. The reasons for the difference between the two models (species was only chosen in the next trees model) will be considered in our future work. Full article
Show Figures

Figure 1

2021

Jump to: 2022

Article
Efficacy of Two Neonicotinoid Insecticides against Invasive Wood Borer Aromia bungii Larvae in Dietary Toxicity Test
Insects 2021, 12(7), 592; https://doi.org/10.3390/insects12070592 - 29 Jun 2021
Cited by 1 | Viewed by 2038
Abstract
In recent years, insecticide trunk injection was put into practical use for controlling wood boring pests. However, few studies have investigated the dose–response relationships between insecticides and wood–boring pests in detail. This study used two commercial formulations of the neonicotinoid insecticides thiamethoxam and [...] Read more.
In recent years, insecticide trunk injection was put into practical use for controlling wood boring pests. However, few studies have investigated the dose–response relationships between insecticides and wood–boring pests in detail. This study used two commercial formulations of the neonicotinoid insecticides thiamethoxam and dinotefuran and investigated their dose–response relationships with invasive wood borer Aromia bungii (Coleoptera: Cerambycidae) larvae. Neonates and late instar larvae were reared with an artificial diet containing different insecticide concentrations (0.01–100 ppm) in the laboratory, and their diet excavation activity, survival rate, and weight change were recorded. Diet excavation immediately dropped in larvae exposed to high concentrations of thiamethoxam or dinotefuran (≥1 ppm in neonates and ≥10 ppm in late instar larvae). The weight and survival rate gradually declined over 12 weeks in late instar larvae. These results suggest that the two neonicotinoids intoxicate and debilitate A. bungii larvae gradually to death. In practical use, rapid suppression of A. bungii wood boring damage can be expected by trunk injection of neonicotinoid insecticides. However, a relatively long-term retention of the insecticides may be required to kill large larvae. Neonates may be controlled with lower insecticide dosage and shorter exposure than larger larvae. Full article
Show Figures

Graphical abstract

Back to TopTop