Poultry Genetics and Genomics (Volume II)

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Animal Genetics and Genomics".

Deadline for manuscript submissions: 25 September 2024 | Viewed by 733

Special Issue Editors

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
Interests: poultry; genetics and breeding; gene function; epigenetics; molecular-marker-assisted breeding; adipogenesis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
Interests: poultry; quantitative genetics; myogenesis; gene function; molecular mechanisms; non-coding RNA
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Poultry meat and eggs are among the most common animal sources of food consumed at the global level. With continuous genetic selection, modern poultry has become the most efficient domestic animal, producing cheap and high-quality protein. The rapid development of poultry genetics and genomics breeding has brought huge economic benefits to the global poultry industry. However, numerous problems in poultry genetics and genomics remain to be addressed. For example, the complex genetic basis of important economic traits is still poorly understood, and the functional genes responsible for target traits require further mining. Genomic selection technology is immature, and its application in poultry breeding is still relatively limited.

This Special Issue aims to collect high-quality original research articles and comprehensive reviews to address emerging challenges in poultry genetics and genomics. Topics of interest include, but are not limited to, genetic diversity and evolution, genome annotation, function and molecular mechanisms, omics studies, genomic selection, gene editing, and other new progress related to poultry genetics and genomics.

Dr. Tao Zhang
Dr. Genxi Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • poultry
  • gene function
  • genome annotation
  • omics
  • gene editing
  • genomic selection
  • molecular mechanisms
  • molecular marker

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 2101 KiB  
Article
Dissecting Selective Signatures and Candidate Genes in Grandparent Lines Subject to High Selection Pressure for Broiler Production and in a Local Russian Chicken Breed of Ushanka
by Michael N. Romanov, Alexey V. Shakhin, Alexandra S. Abdelmanova, Natalia A. Volkova, Dmitry N. Efimov, Vladimir I. Fisinin, Liudmila G. Korshunova, Dmitry V. Anshakov, Arsen V. Dotsev, Darren K. Griffin and Natalia A. Zinovieva
Genes 2024, 15(4), 524; https://doi.org/10.3390/genes15040524 - 22 Apr 2024
Viewed by 605
Abstract
Breeding improvements and quantitative trait genetics are essential to the advancement of broiler production. The impact of artificial selection on genomic architecture and the genetic markers sought remains a key area of research. Here, we used whole-genome resequencing data to analyze the genomic [...] Read more.
Breeding improvements and quantitative trait genetics are essential to the advancement of broiler production. The impact of artificial selection on genomic architecture and the genetic markers sought remains a key area of research. Here, we used whole-genome resequencing data to analyze the genomic architecture, diversity, and selective sweeps in Cornish White (CRW) and Plymouth Rock White (PRW) transboundary breeds selected for meat production and, comparatively, in an aboriginal Russian breed of Ushanka (USH). Reads were aligned to the reference genome bGalGal1.mat.broiler.GRCg7b and filtered to remove PCR duplicates and low-quality reads using BWA-MEM2 and bcftools software; 12,563,892 SNPs were produced for subsequent analyses. Compared to CRW and PRW, USH had a lower diversity and a higher genetic distinctiveness. Selective sweep regions and corresponding candidate genes were examined based on ZFST, hapFLK, and ROH assessment procedures. Twenty-seven prioritized chicken genes and the functional projection from human homologs suggest their importance for selection signals in the studied breeds. These genes have a functional relationship with such trait categories as body weight, muscles, fat metabolism and deposition, reproduction, etc., mainly aligned with the QTLs in the sweep regions. This information is pivotal for further executing genomic selection to enhance phenotypic traits. Full article
(This article belongs to the Special Issue Poultry Genetics and Genomics (Volume II))
Show Figures

Figure 1

Back to TopTop