Study on Genotypes and Phenotypes of Neurodegenerative Diseases (Volume II)

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Human Genomics and Genetic Diseases".

Deadline for manuscript submissions: closed (20 February 2024) | Viewed by 1804

Special Issue Editor


E-Mail Website
Guest Editor
Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
Interests: neurogenetics; motor neuron diseases; amyotrophic lateral sclerosis; cerebral cavernous malformations; genotype-phenotype correlations; gene variant consequences; microRNAs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Genetic factors are key players in the pathogenesis of several neurodegenerative diseases, acting both as monogenic causes in inherited diseases and modulatory factors in multifactorial/sporadic diseases. With the recent advances in cost-effective genetic analyses, knolwledge of the genetic bases of several neurodegenerative disorders has expanded significantly great strides, improving our understanding of the mechanisms underpinning the pathogenesis of these conditions.

Neurodegenerative diseases display a certain degree of genetic heterogeneity; in other words, the presentation and severity of disease may vary from individual to individual. In some cases, the same phenotype can be determined according to different variants in different genes. On the other hand, the same mutation may be associated with phenotypic heterogeneity, also in the same family. However, in some cases, a specific variant may be related to a uniform phenotype, proving helpful for diagnostic and prognostic aims. In the precision medicine era, the enhanced characterization of genotype–phenotype correlations may allow us to improve therapeutic approaches, evaluate individual drug responses and guide gene-focused clinical trials.

This Special Issue is the second edition of the Special Issue "Study on Genotypes and Phenotypes of Neurodegenerative Diseases", and aims to provide an overview of this field. Contributions related, but not limited to, Alzheimer's disease and other dementias, Parkinson's disease, and motor neurone diseases are welcome, including original research articles and reviews.

Dr. Claudia Ricci
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neurodegenerative diseases
  • genetic variants
  • genotype
  • phenotype
  • genotype–phenotype correlations

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 734 KiB  
Article
Spectrum of ERCC6-Related Cockayne Syndrome (Type B): From Mild to Severe Forms
by Jacopo Sartorelli, Lorena Travaglini, Marina Macchiaiolo, Giacomo Garone, Michaela Veronika Gonfiantini, Davide Vecchio, Lorenzo Sinibaldi, Flaminia Frascarelli, Viola Ceccatelli, Sara Petrillo, Fiorella Piemonte, Gabriele Piccolo, Antonio Novelli, Daniela Longo, Stefano Pro, Adele D’Amico, Enrico Silvio Bertini and Francesco Nicita
Genes 2024, 15(4), 508; https://doi.org/10.3390/genes15040508 - 18 Apr 2024
Viewed by 357
Abstract
(1) Background: Cockayne syndrome (CS) is an ultra-rare multisystem disorder, classically subdivided into three forms and characterized by a clinical spectrum without a clear genotype-phenotype correlation for both the two causative genes ERCC6 (CS type B) and ERCC8 (CS type A). We assessed [...] Read more.
(1) Background: Cockayne syndrome (CS) is an ultra-rare multisystem disorder, classically subdivided into three forms and characterized by a clinical spectrum without a clear genotype-phenotype correlation for both the two causative genes ERCC6 (CS type B) and ERCC8 (CS type A). We assessed this, presenting a series of patients with genetically confirmed CSB. (2) Materials and Methods: We retrospectively collected demographic, clinical, genetic, neuroimaging, and serum neurofilament light-chain (sNFL) data about CSB patients; diagnostic and severity scores were also determined. (3) Results: Data of eight ERCC6/CSB patients are presented. Four patients had CS I, three patients CS II, and one patient CS III. Various degrees of ataxia and spasticity were cardinal neurologic features, with variably combined systemic characteristics. Mean age at diagnosis was lower in the type II form, in which classic CS signs were more evident. Interestingly, sNFL determination appeared to reflect clinical classification. Two novel premature stop codon and one novel missense variants were identified. All CS I subjects harbored the p.Arg735Ter variant; the milder CS III subject carried the p.Leu764Ser missense change. (4) Conclusion: Our work confirms clinical variability also in the ERCC6/CSB type, where manifestations may range from severe involvement with prenatal or neonatal onset to normal psychomotor development followed by progressive ataxia. We propose, for the first time in CS, sNFL as a useful peripheral biomarker, with increased levels compared to currently available reference values and with the potential ability to reflect disease severity. Full article
Show Figures

Figure 1

16 pages, 2290 KiB  
Article
Genome-Wide Association Analysis across Endophenotypes in Alzheimer’s Disease: Main Effects and Disease Stage-Specific Interactions
by Thea J. Rosewood, Kwangsik Nho, Shannon L. Risacher, Sujuan Gao, Li Shen, Tatiana Foroud, Andrew J. Saykin and on behalf of the Alzheimer’s Disease Neuroimaging Initiative
Genes 2023, 14(11), 2010; https://doi.org/10.3390/genes14112010 - 27 Oct 2023
Viewed by 1225
Abstract
The underlying genetic susceptibility for Alzheimer’s disease (AD) is not yet fully understood. The heterogeneous nature of the disease challenges genetic association studies. Endophenotype approaches can help to address this challenge by more direct interrogation of biological traits related to the disease. AD [...] Read more.
The underlying genetic susceptibility for Alzheimer’s disease (AD) is not yet fully understood. The heterogeneous nature of the disease challenges genetic association studies. Endophenotype approaches can help to address this challenge by more direct interrogation of biological traits related to the disease. AD endophenotypes based on amyloid-β, tau, and neurodegeneration (A/T/N) biomarkers and cognitive performance were selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort (N = 1565). A genome-wide association study (GWAS) of quantitative phenotypes was performed using an SNP main effect and an SNP by Diagnosis interaction (SNP × DX) model to identify disease stage-specific genetic effects. Nine loci were identified as study-wide significant with one or more A/T/N endophenotypes in the main effect model, as well as additional findings significantly associated with cognitive measures. These nine loci include SNPs in or near the genes APOE, SRSF10, HLA-DQB1, XKR3, and KIAA1671. The SNP × DX model identified three study-wide significant genetic loci (BACH2, EP300, and PACRG-AS1) with a neuroprotective effect in later AD stage endophenotypes. An endophenotype approach identified novel genetic associations and provided insight into the molecular mechanisms underlying the genetic associations that may otherwise be missed using conventional case-control study designs. Full article
Show Figures

Figure 1

Back to TopTop