Research on the Airtightness of Buildings

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Energy, Physics, Environment, and Systems".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 1759

Special Issue Editors


E-Mail Website
Guest Editor
RG Architecture & Energy, Universidad de Valladolid, Valladolid, Spain
Interests: building ventilation; indoor air quality; buildings airtightness

E-Mail Website
Guest Editor
RG Architecture & Energy, Universidad de Valladolid, Valladolid, Spain
Interests: airtightness; air infiltration; energy performance; IAQ; building technology

Special Issue Information

Dear Colleagues,

This Special Issue of Buildings is motivated by the importance of the airtightness of buildings in terms of indoor air quality and the energy implications of heat transfer. Currently, it is not possible to design and construct nZEB buildings without taking this parameter into account, and it is essential that we can determine this parameter in buildings to be renovated in order to achieve a significant improvement in their final energy consumption. 

The aim of this Special Issue is to present the most recent studies addressing airtightness and infiltration in buildings. Topics of interest include the following:

  • Experimental tests in constructed buildings; 
  • Effects on the comfort and health of building occupants; 
  • Methods for testing individual zones within multi-zone complexes; 
  • Alternative methods of pressurization for calculating airtightness; 
  • Effects on the performance of heat recovery systems; 
  • Impact of infiltrations on the energy consumption of buildings. 

Research papers, analytical reviews, case studies, conceptual frameworks and policy-relevant articles are welcome. All papers will be published as open access after a rigorous peer-review process.

Dr. Alberto Meiss
Dr. Irene Poza Casado
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • airtightness
  • air infiltration
  • pressurisation testing
  • ventilation
  • indoor air quality
  • energy efficiency
  • heat recovery
  • zero-emission buildings
  • CONTAM

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 13111 KiB  
Article
Field Testing of an Acoustic Method for Locating Air Leakages in Building Envelopes
by Björn Schiricke, Markus Diel and Benedikt Kölsch
Buildings 2024, 14(4), 1159; https://doi.org/10.3390/buildings14041159 - 19 Apr 2024
Viewed by 394
Abstract
Maintaining the airtightness of building envelopes is critical to the energy efficiency of buildings, yet leak detection remains a significant challenge, particularly during building refurbishment. This study addresses the effectiveness of the acoustic beamforming measurement method in identifying leaks in building envelopes. For [...] Read more.
Maintaining the airtightness of building envelopes is critical to the energy efficiency of buildings, yet leak detection remains a significant challenge, particularly during building refurbishment. This study addresses the effectiveness of the acoustic beamforming measurement method in identifying leaks in building envelopes. For this reason, an in-field study employing the acoustic beamforming measurement method was conducted. The study involved testing over 30 rooms across three different multi-story office buildings of varying ages and heterogeneous envelope structures. Numerous leaks were located in the façades, which were subsequently visually confirmed or even verified with smoke sticks. The data, captured using an acoustic camera (a microphone ring array), revealed distinct spectra that indicate the method’s potential for further research. The basic functionality and the significant potential of this methodology for localizing leakages in large buildings were proven. Full article
(This article belongs to the Special Issue Research on the Airtightness of Buildings)
Show Figures

Figure 1

22 pages, 3817 KiB  
Article
Model-Scale Reproduction of Fan Pressurization Measurements in a Wind Tunnel: Design and Characterization of a New Experimental Facility
by Adeline Mélois, Anh Dung Tran, Bassam Moujalled, Mohamed El Mankibi, Gaëlle Guyot, Benedikt Kölsch and Valérie Leprince
Buildings 2024, 14(2), 400; https://doi.org/10.3390/buildings14020400 - 1 Feb 2024
Viewed by 576
Abstract
In many countries, building airtightness is mandated by national regulations or energy efficiency programs, necessitating accurate measurements using the fan pressurization method. Given the significant influence of wind on measurement uncertainty and the need for reliable regulatory tests, experimental studies in a controlled [...] Read more.
In many countries, building airtightness is mandated by national regulations or energy efficiency programs, necessitating accurate measurements using the fan pressurization method. Given the significant influence of wind on measurement uncertainty and the need for reliable regulatory tests, experimental studies in a controlled environment are needed. This paper presents a novel experimental facility designed to replicate fan pressurization measurements on a model scale under controlled laboratory conditions. The key features of the facility include the ability to (1) conduct fan pressurization measurements, (2) generate steady wind conditions across varying wind speeds, and (3) accurately measure parameters like the pressure difference, wind speed, and airflow rate. The experimental facility includes a pressurization device, a wind tunnel, and a model representing a two-story house with nine distinct leakage distributions. A total of 96 fan pressurization measurements were executed using this setup, adhering to the similarity conditions specifically defined for assessing airflow errors due to wind. These tests followed the ISO 9972 standard, with the pressure differences ranging from 10 Pa to 100 Pa and steady wind speeds from 1 m·s−1 to 7.5 m·s−1. This experimental facility marks a significant advancement in understanding the effect of wind on building airtightness measurements. Full article
(This article belongs to the Special Issue Research on the Airtightness of Buildings)
Show Figures

Figure 1

Back to TopTop