3D Printable Soft Robotics and Soft Actuators

A special issue of Actuators (ISSN 2076-0825). This special issue belongs to the section "Actuator Materials".

Deadline for manuscript submissions: closed (15 November 2022) | Viewed by 15989

Special Issue Editor


E-Mail Website
Guest Editor
School of Engineering and Digital Arts, University of Kent, Canterbury, CT2 7NT, UK
Interests: smart materials; additive manufacturing (3D and 4D printing); soft actuator; mechanics of materials

Special Issue Information

Dear Colleagues,

Initially inspired by soft biological systems in nature, soft robots are attracting attention due to their flexibility and integration to human interfaces. Soft robotic research has expanded in recent years due to the significant progress in additive manufacturing technologies and soft functional materials. The novel 3D printing methods facilitate fabrications of customized functional materials as well as soft complex structures, such as soft sensors and actuators.

This Special Issue invites all original research articles, review papers, and short communications addressing the latest advances in the field of 3D printable soft robotics and soft actuators. This includes but is not limited to 3D printing of soft and functional materials, smart materials, 4D printing, soft composite synthesis, experimental characterization, 3D printing development, computational material modeling, optimization and design, manufacturing, and applications.

Dr. Amir Hosein Sakhaei
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • 3D printing
  • soft robot
  • soft actuator
  • 4D printing
  • additive manufacturing
  • soft materials
  • functional materials
  • design and optimization
  • biomimetic

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4156 KiB  
Article
3D Printing of Silicone Elastomers for Soft Actuators
by Jiachen Li, Shengpeng Wu, Wei Zhang, Kaiqi Ma and Guoqing Jin
Actuators 2022, 11(7), 200; https://doi.org/10.3390/act11070200 - 18 Jul 2022
Cited by 12 | Viewed by 3437
Abstract
A procedure for 3D printing of silicone elastomers with a direct ink writing (DIW) process has demonstrated great potential in areas as diverse as flexible electronics, medical devices, and soft robotics. In this report, we propose a comprehensive guide for printing highly stretchable [...] Read more.
A procedure for 3D printing of silicone elastomers with a direct ink writing (DIW) process has demonstrated great potential in areas as diverse as flexible electronics, medical devices, and soft robotics. In this report, we propose a comprehensive guide for printing highly stretchable silicones in response to material, equipment and process dilemmas. Specifically, we first tested the material properties of Dow Corning 737, then modeled and simulated two commonly used needles to select a suitable needle, followed by parameter optimization experiments using the built DIW printer to find out the appropriate printing speed and layer height with a defined air pressure and needle diameter. Finally, the optimal combination of parameters was obtained. For further demonstration, artificial muscles and structurally complex soft grippers were also printed directly to verify the feasibility of high-precision 3D printing of soft actuators with soft materials. We believe that this work could provide a guide for further work using the DIW process to print soft matter in a wide range of application scenarios. Full article
(This article belongs to the Special Issue 3D Printable Soft Robotics and Soft Actuators)
Show Figures

Figure 1

11 pages, 1950 KiB  
Article
A Sensorized Soft Pneumatic Actuator Fabricated with Extrusion-Based Additive Manufacturing
by Antonia Georgopoulou, Lukas Egloff, Bram Vanderborght and Frank Clemens
Actuators 2021, 10(5), 102; https://doi.org/10.3390/act10050102 - 10 May 2021
Cited by 33 | Viewed by 5278
Abstract
Soft pneumatic actuators with a channel network (pneu-net) based on thermoplastic elastomers are compatible with fused deposition modeling (FDM). However, conventional filament-based fused deposition modeling (FDM) printers are not well suited for thermoplastic elastomers with a shore hardness (Sh < 70A). Therefore, in [...] Read more.
Soft pneumatic actuators with a channel network (pneu-net) based on thermoplastic elastomers are compatible with fused deposition modeling (FDM). However, conventional filament-based fused deposition modeling (FDM) printers are not well suited for thermoplastic elastomers with a shore hardness (Sh < 70A). Therefore, in this study, a pellet-based FDM printer was used to print pneumatic actuators with a shore hardness of Sh18A. Additionally, the method allowed the in situ integration of soft piezoresistive sensing elements during the fabrication. The integrated piezoresistive elements were based on conductive composites made of three different styrene-ethylene-butylene-styrene (SEBS) thermoplastic elastomers, each with a carbon black (CB) filler with a ratio of 1:1. The best sensor behavior was achieved by the SEBS material with a shore hardness of Sh50A. The dynamic and quasi-static sensor behavior were investigated on SEBS strips with integrated piezoresistive sensor composite material, and the results were compared with TPU strips from a previous study. Finally, the piezoresistive composite was used for the FDM printing of soft pneumatic actuators with a shore hardness of 18 A. It is worth mentioning that 3 h were needed for the fabrication of the soft pneumatic actuator with an integrated strain sensing element. In comparison to classical mold casting method, this is faster, since curing post-processing is not required and will help the industrialization of pneumatic actuator-based soft robotics. Full article
(This article belongs to the Special Issue 3D Printable Soft Robotics and Soft Actuators)
Show Figures

Figure 1

14 pages, 58884 KiB  
Article
An Origami Flexiball-Inspired Metamaterial Actuator and Its In-Pipe Robot Prototype
by Fuwen Hu and Tian Li
Actuators 2021, 10(4), 67; https://doi.org/10.3390/act10040067 - 26 Mar 2021
Cited by 9 | Viewed by 5684
Abstract
Usually, polyhedra are viewed as the underlying constructive cells of packing or tiling in many disciplines, including crystallography, protein folding, viruses structure, building architecture, etc. Here, inspired by the flexible origami polyhedra (commonly called origami flexiballs), we initially probe into their intrinsic metamaterial [...] Read more.
Usually, polyhedra are viewed as the underlying constructive cells of packing or tiling in many disciplines, including crystallography, protein folding, viruses structure, building architecture, etc. Here, inspired by the flexible origami polyhedra (commonly called origami flexiballs), we initially probe into their intrinsic metamaterial properties and robotized methods from fabrication to actuation. Firstly, the topology, geometries and elastic energies of shape shifting are analyzed for the three kinds of origami flexiballs with extruded outward rhombic faces. Provably, they meet the definitions of reconfigurable and transformable metamaterials with switchable stiffness and multiple degrees of freedom. Secondly, a new type of soft actuator with rhombic deformations is successfully put forward, different from soft bionic deformations like elongating, contracting, bending, twisting, spiraling, etc. Further, we redesign and fabricate the three-dimensional (3D) printable structures of origami flexiballs considering their 3D printability and foldability, and magnetically actuated them through the attachment of magnetoactive elastomer. Lastly, a fully soft in-pipe robot prototype is presented using the origami flexiball as an applicable attempt. Experimental work clearly suggests that the presented origami flexiball robot has good adaptability to various pipe sizes, and also can be easily expanded to different scales, or reconfigured into more complex metastructures by assembly. In conclusion, this research provides a newly interesting and illuminating member for the emerging families of mechanical metamaterials, soft actuators and soft robots. Full article
(This article belongs to the Special Issue 3D Printable Soft Robotics and Soft Actuators)
Show Figures

Figure 1

Back to TopTop