Previous Issue
Volume 2, March
 
 

Waste, Volume 2, Issue 2 (June 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 1093 KiB  
Review
Polylactic Acid Composites Reinforced with Eggshell/CaCO3 Filler Particles: A Review
by Anahita Homavand, Duncan E. Cree and Lee D. Wilson
Waste 2024, 2(2), 169-185; https://doi.org/10.3390/waste2020010 - 19 Apr 2024
Viewed by 440
Abstract
Statistics reveal that egg production has increased in recent decades. This growth suggests there is a global rise in available eggshell biomass due to the current underutilization of this bio-waste material. A number of different applications for waste eggshells (WEGs) are known, that [...] Read more.
Statistics reveal that egg production has increased in recent decades. This growth suggests there is a global rise in available eggshell biomass due to the current underutilization of this bio-waste material. A number of different applications for waste eggshells (WEGs) are known, that include their use as an additive in human/animal food, soil amendment, cosmetics, catalyst, sorbent, and filler in polymer composites. In this article, worldwide egg production and leading countries are examined, in addition to a discussion of the various applications of eggshell biomass. Eggshells are a rich supplement of calcium carbonate; therefore, they can be added as a particulate filler to polymer composites. In turn, the addition of a lower-cost filler, such as eggshell or calcium carbonate, can reduce overall material fabrication costs. Polylactic acid (PLA) is currently a high-demand biopolymer, where the fabrication of PLA composites has gained increasing attention due to its eco-friendly properties. In this review, PLA composites that contain calcium carbonate or eggshells are emphasized, and the mechanical properties of the composites (e.g., tensile strength, flexural strength, tensile elastic modulus, flexural modulus, and elongation (%) at break) are investigated. The results from this review reveal that the addition of eggshell/calcium carbonate to PLA reduces the tensile and flexural strength of PLA composites, whereas an increase in the tensile and flexural modulus, and elongation (%) at break of composites are described herein. Full article
Show Figures

Figure 1

16 pages, 8033 KiB  
Article
Thermo-Mechano-Chemical Processing of Printed Circuit Boards for Organic Fraction Removal
by Sergey M. Frolov, Viktor A. Smetanyuk, Anton S. Silantiev, Ilias A. Sadykov, Fedor S. Frolov, Jaroslav K. Hasiak, Alexey A. Shiryaev and Vladimir E. Sitnikov
Waste 2024, 2(2), 153-168; https://doi.org/10.3390/waste2020009 - 15 Apr 2024
Viewed by 415
Abstract
Printed circuit boards (PCBs) are the main components of e-waste. In order to reduce the negative impact of waste PCBs on human health and the environment, they must be properly disposed of. A new method is demonstrated for recycling waste PCBs. It is [...] Read more.
Printed circuit boards (PCBs) are the main components of e-waste. In order to reduce the negative impact of waste PCBs on human health and the environment, they must be properly disposed of. A new method is demonstrated for recycling waste PCBs. It is referred to as the high-temperature thermo-mechano-chemical gasification (TMCG) of PCBs by the detonation-born gasification agent (GA), which is a blend of H2O and CO2 heated to a temperature above 2000 °C. The GA is produced in a pulsed detonation gun (PDG) operating on a near-stoichiometric methane–oxygen mixture. The PDG operates in a pulsed mode producing pulsed supersonic jets of GA and pulsed shock waves possessing a huge destructive power. When the PDG is attached to a compact flow reactor filled with waste PCBs, the PCBs are subject to the intense thermo-mechano-chemical action of both strong shock waves and high-temperature supersonic jets of GA in powerful vortical structures established in the flow reactor. The shock waves grind waste PCBs into fine particles, which undergo repeated involvement and gasification in the high-temperature vortical structures of the GA. Demonstration experiments show full (above 98%) gasification of the 1 kg batch of organic matter in a setup operation time of less than 350 s. The gaseous products of PCB gasification are mainly composed of CO2, CO, H2, N2, and CH4, with the share of flammable gas components reaching about 45 vol%. The solid residues appear in the form of fine powder with visible metal inclusions of different sizes. All particles in the powder freed from the visible metal inclusions possess a size less than 300–400 μm, including a large fraction of sizes less than 100 μm. The powder contains Sn, Pb, Cu, Ni, Fe, In, Cd, Zn, Ca, Si, Al, Ti, Ni, and Cl. Among these substances, Sn (10–20 wt%), Pb (5–10 wt%), and Cu (up to 1.5 wt%) are detected in the maximum amounts. In the powder submitted for analysis, precious elements Ag, Au, and Pt are not detected. Some solid mass (about 20 wt% of the processed PCBs) is removed from the flow reactor with the escaping gas and is partly (about 10 wt%) trapped by the cyclones in the exhaust cleaning system. Metal inclusions of all visible sizes accumulate only in the flow reactor and are not detected in powder samples extracted from the cyclones. The gasification degree of the solid residues extracted from the cyclones ranges from 76 to 91 wt%, i.e., they are gasified only partly. This problem will be eliminated in future work. Full article
Show Figures

Figure 1

17 pages, 3671 KiB  
Review
Influence of Recycling Processes on Properties of Fine Recycled Concrete Aggregates (FRCA): An Overview
by Eduardo Kloeckner Sbardelotto, Karyne Ferreira dos Santos, Isabel Milagre Martins, Berenice Martins Toralles, Manuel Gomes Vieira and Catarina Brazão Farinha
Waste 2024, 2(2), 136-152; https://doi.org/10.3390/waste2020008 - 09 Apr 2024
Viewed by 323
Abstract
Concrete waste recycling processes involve multiple stages, equipment, and procedures which produce Fine Recycled Concrete Aggregates (FRCA) for use in construction. This research aims at performing a comprehensive overview of the recycling technologies, recycling processes, and normative requirements to produce high-quality FRCA and [...] Read more.
Concrete waste recycling processes involve multiple stages, equipment, and procedures which produce Fine Recycled Concrete Aggregates (FRCA) for use in construction. This research aims at performing a comprehensive overview of the recycling technologies, recycling processes, and normative requirements to produce high-quality FRCA and to investigate the influence of these processes on their physical properties. The properties investigated were the particle size distribution (PSD), water absorption, oven-dry density, and adhered paste. The correlations between these properties were also investigated. The results indicate that the recycling processes with the highest potential for producing high-quality aggregates demand jaw crusher and impact crusher combinations. These processes are better suited for achieving FRCA with the desired particle size distribution and oven-dry density. However, water absorption and adhered paste, which are critical factors for obtaining high-quality FRCA, seem to be more dependent on the original material than on the recycling process. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop