Previous Issue
Volume 4, March
 
 

AppliedMath, Volume 4, Issue 2 (June 2024) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 370 KiB  
Article
Minimal Terracini Loci in a Plane and Their Generalizations
by Edoardo Ballico
AppliedMath 2024, 4(2), 529-543; https://doi.org/10.3390/appliedmath4020028 - 17 Apr 2024
Viewed by 269
Abstract
We study properties of the minimal Terracini loci, i.e., families of certain zero-dimensional schemes, in a projective plane. Among the new results here are: a maximality theorem and the existence of arbitrarily large gaps or non-gaps for the integers x for which the [...] Read more.
We study properties of the minimal Terracini loci, i.e., families of certain zero-dimensional schemes, in a projective plane. Among the new results here are: a maximality theorem and the existence of arbitrarily large gaps or non-gaps for the integers x for which the minimal Terracini locus in degree d is non-empty. We study similar theorems for the critical schemes of the minimal Terracini sets. This part is framed in a more general framework. Full article
12 pages, 564 KiB  
Article
Spontaneous Imbibition and an Interface-Electrostatics-Based Model of the Transition Zone Thickness of Hydrocarbon Reservoirs and Their Theoretical Interpretations
by Mumuni Amadu and Adango Miadonye
AppliedMath 2024, 4(2), 517-528; https://doi.org/10.3390/appliedmath4020027 - 16 Apr 2024
Viewed by 331
Abstract
The transition zone (TZ) of hydrocarbon reservoirs is an integral part of the hydrocarbon pool which contains a substantial fraction of the deposit, particularly in carbonate petroleum systems. Consequently, knowledge of its thickness and petrophysical properties, viz. its pore size distribution and wettability [...] Read more.
The transition zone (TZ) of hydrocarbon reservoirs is an integral part of the hydrocarbon pool which contains a substantial fraction of the deposit, particularly in carbonate petroleum systems. Consequently, knowledge of its thickness and petrophysical properties, viz. its pore size distribution and wettability characteristic, is critical to optimizing hydrocarbon production in this zone. Using classical formation evaluation techniques, the thickness of the transition zone has been estimated, using well logging methods including resistivity and Nuclear Magnetic Resonance, among others. While hydrocarbon fluids’ accumulation in petroleum reservoirs occurs due to the migration and displacement of originally water-filled potential structural and stratigraphic traps, the development of their TZ integrates petrophysical processes that combine spontaneous capillary imbibition and wettability phenomena. In the literature, wettability phenomena have been shown to also be governed by electrostatic phenomena. Therefore, given that reservoir rocks are aggregates of minerals with ionizable surface groups that facilitate the development of an electric double layer, a definite theoretical relationship between the TZ and electrostatic theory must be feasible. Accordingly, a theoretical approach to estimating the TZ thickness, using the electrostatic theory and based on the electric double layer theory, is attractive, but this is lacking in the literature. Herein, we fill the knowledge gap by using the interfacial electrostatic theory based on the fundamental tenets of the solution to the Poisson–Boltzmann mean field theory. Accordingly, we have used an existing model of capillary rise based on free energy concepts to derive a capillary rise equation that can be used to theoretically predict observations based on the TZ thickness of different reservoir rocks, using well-established formation evaluation methods. The novelty of our work stems from the ability of the model to theoretically and accurately predict the TZ thickness of the different lithostratigraphic units of hydrocarbon reservoirs, because of the experimental accessibility of its model parameters. Full article
Show Figures

Figure 1

22 pages, 496 KiB  
Article
Sums of Independent Circular Random Variables and Maximum Likelihood Circular Uniformity Tests Based on Nonnegative Trigonometric Sums Distributions
by Juan José Fernández-Durán and María Mercedes Gregorio-Domínguez
AppliedMath 2024, 4(2), 495-516; https://doi.org/10.3390/appliedmath4020026 - 09 Apr 2024
Viewed by 312
Abstract
The sum of independent circular uniformly distributed random variables is also circular uniformly distributed. In this study, it is shown that a family of circular distributions based on nonnegative trigonometric sums (NNTS) is also closed under summation. Given the flexibility of NNTS circular [...] Read more.
The sum of independent circular uniformly distributed random variables is also circular uniformly distributed. In this study, it is shown that a family of circular distributions based on nonnegative trigonometric sums (NNTS) is also closed under summation. Given the flexibility of NNTS circular distributions to model multimodality and skewness, these are good candidates for use as alternative models to test for circular uniformity to detect different deviations from the null hypothesis of circular uniformity. The circular uniform distribution is a member of the NNTS family, but in the NNTS parameter space, it corresponds to a point on the boundary of the parameter space, implying that the regularity conditions are not satisfied when the parameters are estimated by using the maximum likelihood method. Two NNTS tests for circular uniformity were developed by considering the standardised maximum likelihood estimator and the generalised likelihood ratio. Given the nonregularity condition, the critical values of the proposed NNTS circular uniformity tests were obtained via simulation and interpolated for any sample size by the fitting of regression models. The validity of the proposed NNTS circular uniformity tests was evaluated by generating NNTS models close to the circular uniformity null hypothesis. Full article
Show Figures

Figure 1

27 pages, 1060 KiB  
Article
A New Approach to Understanding Quantum Mechanics: Illustrated Using a Pedagogical Model over ℤ2
by David Ellerman
AppliedMath 2024, 4(2), 468-494; https://doi.org/10.3390/appliedmath4020025 - 09 Apr 2024
Viewed by 337
Abstract
The new approach to quantum mechanics (QM) is that the mathematics of QM is the linearization of the mathematics of partitions (or equivalence relations) on a set. This paper develops those ideas using vector spaces over the field [...] Read more.
The new approach to quantum mechanics (QM) is that the mathematics of QM is the linearization of the mathematics of partitions (or equivalence relations) on a set. This paper develops those ideas using vector spaces over the field Z2={0.1} as a pedagogical or toy model of (finite-dimensional, non-relativistic) QM. The 0,1-vectors are interpreted as sets, so the model is “quantum mechanics over sets” or QM/Sets. The key notions of partitions on a set are the logical-level notions to model distinctions versus indistinctions, definiteness versus indefiniteness, or distinguishability versus indistinguishability. Those pairs of concepts are the key to understanding the non-classical ‘weirdness’ of QM. The key non-classical notion in QM is the notion of superposition, i.e., the notion of a state that is indefinite between two or more definite- or eigen-states. As Richard Feynman emphasized, all the weirdness of QM is illustrated in the double-slit experiment, so the QM/Sets version of that experiment is used to make the key points. Full article
Show Figures

Figure 1

16 pages, 3884 KiB  
Article
Analyzing Small-Signal Stability in a Multi-Source Single-Area Power System with a Load-Frequency Controller Coordinated with a Photovoltaic System
by Ghazanfar Shahgholian and Arman Fathollahi
AppliedMath 2024, 4(2), 452-467; https://doi.org/10.3390/appliedmath4020024 - 03 Apr 2024
Viewed by 511
Abstract
The frequency deviation from the nominal working frequency in power systems is a consequence of the imbalance between total electrical loads and the aggregate power supplied by production units. The sensitivity of energy system frequency to both minor and major load variations underscore [...] Read more.
The frequency deviation from the nominal working frequency in power systems is a consequence of the imbalance between total electrical loads and the aggregate power supplied by production units. The sensitivity of energy system frequency to both minor and major load variations underscore the need for effective frequency load control mechanisms. In this paper, frequency load control in single-area power system with multi-source energy is analysed and simulated. Also, the effect of the photovoltaic system on the frequency deviation changes in the energy system is shown. In the single area energy system, the dynamics of thermal turbine with reheat, thermal turbine without reheat and hydro turbine are considered. The simulation results using Simulink/Matlab and model analysis using eigenvalue analysis show the dynamic behaviour of the power system in response to changes in the load. Full article
Show Figures

Figure 1

10 pages, 264 KiB  
Article
An Explicit Form of Ramp Function
by John Constantine Venetis
AppliedMath 2024, 4(2), 442-451; https://doi.org/10.3390/appliedmath4020023 - 02 Apr 2024
Viewed by 432
Abstract
In this paper, an analytical exact form of the ramp function is presented. This seminal function constitutes a fundamental concept of the digital signal processing theory and is also involved in many other areas of applied sciences and engineering. In particular, the ramp [...] Read more.
In this paper, an analytical exact form of the ramp function is presented. This seminal function constitutes a fundamental concept of the digital signal processing theory and is also involved in many other areas of applied sciences and engineering. In particular, the ramp function is performed in a simple manner as the pointwise limit of a sequence of real and continuous functions with pointwise convergence. This limit is zero for strictly negative values of the real variable x, whereas it coincides with the independent variable x for strictly positive values of the variable x. Here, one may elucidate beforehand that the pointwise limit of a sequence of continuous functions can constitute a discontinuous function, on the condition that the convergence is not uniform. The novelty of this work, when compared to other research studies concerning analytical expressions of the ramp function, is that the proposed formula is not exhibited in terms of miscellaneous special functions, e.g., gamma function, biexponential function, or any other special functions, such as error function, hyperbolic function, orthogonal polynomials, etc. Hence, this formula may be much more practical, flexible, and useful in the computational procedures, which are inserted into digital signal processing techniques and other engineering practices. Full article
15 pages, 2935 KiB  
Article
Enhancing COVID-19 Prevalence Forecasting: A Hybrid Approach Integrating Epidemic Differential Equations and Recurrent Neural Networks
by Liang Kong, Yanhui Guo and Chung-wei Lee
AppliedMath 2024, 4(2), 427-441; https://doi.org/10.3390/appliedmath4020022 - 01 Apr 2024
Viewed by 532
Abstract
Accurate forecasting of the coronavirus disease 2019 (COVID-19) spread is indispensable for effective public health planning and the allocation of healthcare resources at all levels of governance, both nationally and globally. Conventional prediction models for the COVID-19 pandemic often fall short in precision, [...] Read more.
Accurate forecasting of the coronavirus disease 2019 (COVID-19) spread is indispensable for effective public health planning and the allocation of healthcare resources at all levels of governance, both nationally and globally. Conventional prediction models for the COVID-19 pandemic often fall short in precision, due to their reliance on homogeneous time-dependent transmission rates and the oversight of geographical features when isolating study regions. To address these limitations and advance the predictive capabilities of COVID-19 spread models, it is imperative to refine model parameters in accordance with evolving insights into the disease trajectory, transmission rates, and the myriad economic and social factors influencing infection. This research introduces a novel hybrid model that combines classic epidemic equations with a recurrent neural network (RNN) to predict the spread of the COVID-19 pandemic. The proposed model integrates time-dependent features, namely the numbers of individuals classified as susceptible, infectious, recovered, and deceased (SIRD), and incorporates human mobility from neighboring regions as a crucial spatial feature. The study formulates a discrete-time function within the infection component of the SIRD model, ensuring real-time applicability while mitigating overfitting and enhancing overall efficiency compared to various existing models. Validation of the proposed model was conducted using a publicly available COVID-19 dataset sourced from Italy. Experimental results demonstrate the model’s exceptional performance, surpassing existing spatiotemporal models in three-day ahead forecasting. This research not only contributes to the field of epidemic modeling but also provides a robust tool for policymakers and healthcare professionals to make informed decisions in managing and mitigating the impact of the COVID-19 pandemic. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop