Previous Issue
Volume 4, March
 
 

Future Pharmacol., Volume 4, Issue 2 (June 2024) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 2459 KiB  
Article
Physiologically Based Pharmacokinetic Modelling of UGT Substrate Drugs Lamotrigine and Raltegravir during Pregnancy
by Monika Berezowska, Paola Coppola, Venkatesh Pilla Reddy and Pradeep Sharma
Future Pharmacol. 2024, 4(2), 317-335; https://doi.org/10.3390/futurepharmacol4020018 - 10 Apr 2024
Viewed by 560
Abstract
Pregnancy is associated with various physiological changes that can significantly impact the disposition of drugs. To further the insight into how pregnancy affects the pharmacokinetics of drugs at different stages, clinical studies can be simulated using Physiologically Based Pharmacokinetic modelling. PBPK modelling of [...] Read more.
Pregnancy is associated with various physiological changes that can significantly impact the disposition of drugs. To further the insight into how pregnancy affects the pharmacokinetics of drugs at different stages, clinical studies can be simulated using Physiologically Based Pharmacokinetic modelling. PBPK modelling of drugs metabolised by Phase I enzymes (CYPs) in pregnant population models had been reported in the past, while its use in Phase II (UGTs) is not known. In this study, based on the results of a recent meta-analysis, lamotrigine (UGT1A4) and raltegravir (UGT1A1) were selected as candidate drugs, and pregnancy-specific models were developed for both using the Simcyp v.21 simulator. A middle-out strategy was used where previously published drug parameters were adapted from a minimal to a full PBPK model to allow their application for the pregnancy population models using Simcyp PBPK software. Adapted models were successfully validated against observed clinical data both qualitatively (visual overlay of plasma concentrations on graphs) and quantitatively (calculating the predicted/observed ratios for AUC, Cmax and CL as well as statistical analysis using model prediction power metrics). They were then applied to predict the PKs of both drugs in pregnancy population models. The temporal changes in maternal enzymatic activities during gestation were modelled based on in vitro data reported in literature and default relationships encoded in the Simcyp platform for UGT1A1 and UGT1A4, respectively. Our study demonstrates the successful development and validation of a PBPK model for LTG and RTG in pregnancy population models. Future work with additional UGT1A4 substrate drugs using the proposed changes in UGT1A4 activity may enable validating the pregnancy population model and its subsequent use for the prospective prediction of PK. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop