# On Mach’s Principle in Entropic Gravity

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction and Background

## 2. Gravitational Force from Entropic Considerations

#### 2.1. Spacetime and Transactions

#### 2.2. Spatial Information

#### 2.3. Transactions and a Holographic Principle

#### 2.4. Entropic Force

## 3. Mach’s Principle

#### 3.1. The Nature of Gravity

#### 3.2. Mach’s Principle

#### 3.3. The Gravitational Constant

## 4. Summary and Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Mach, E. History and Root of the Principle of the Conservation of Energy. In The Science of Mechanics, 6th ed.; Open Court Publishing Company: McLean, VA, USA, 1904. [Google Scholar]
- Barbour, J. The Definition of Mach’s Principle. Found. Phys.
**2010**, 4, 1263–1284. [Google Scholar] [CrossRef] - Einstein, A.S.B. preuss. Akad. Wiss.
**1917**, i, 147. [Google Scholar] - Sciama, D. On the origin of inertia. Mon. Not. R. Astronmical Soc.
**1953**, 113, 34. [Google Scholar] [CrossRef] - Assis, A.K.T. Relational Mechanics; Apeiron: Montreal, QC, Canada, 1999. [Google Scholar]
- Giné, J. On the Origin of the Inertia: The modified Newtonian Dynamics Theory. Chaos Solitons Fractals
**2009**, 41, 1651–1660. [Google Scholar] [CrossRef] - Brans, C.H.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev.
**1961**, 124, 925–935. [Google Scholar] [CrossRef] - Schlatter, A. On the Foundations of Space and Time by Quantum-Events. Found. Phys.
**2022**, 52, 7. [Google Scholar] [CrossRef] - Schlatter, A.; Kastner, R.E. Gravity from Transactions: Fulfilling the Entropic Gravity Program. J. Phys. Commun.
**2023**, 7, 065009. [Google Scholar] [CrossRef] - Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys.
**2011**, 4, 29. [Google Scholar] [CrossRef] - Kastner, R.E. The Transactional Interpretation of Quantum Mechanics: A Relativistic Treatment; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Sorkin, R.D. Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School). arXiv
**2003**. [Google Scholar] [CrossRef] - Kastner, R.E.; Schlatter, A. Entropy Cost of “Erasure” in Physically Irrversible Processes. Mathematics
**2024**, 12, 206. [Google Scholar] [CrossRef] - Bekenstein, J.D. Black holes and entropy. Phys. Rev. D
**1973**, 7, 2333. [Google Scholar] [CrossRef] - Wald, R.M. General Relativity; Appendix D; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Fletcher, S.C. Light Clocks and the Clock Hypothesis. Found. Phys
**2013**, 43, 1369–1383. [Google Scholar] [CrossRef] - Bergson, H. Durée et Simultanéité, a Propos de la Théorie d’Einstein; Presses Universitaires de France: Paris, France, 1922. [Google Scholar]
- Davidson, W. General Relativity and Mach’s Principle. Mon. Not. R. Astron. Soc.
**1957**, 117, 212–224. [Google Scholar] [CrossRef] - Schrödinger, E. Die Erfüllbarkeit der Relativitätsanforderung in der klassischen Mechnik. Ann. Phys.
**1925**, 328, 325–336. [Google Scholar] [CrossRef] - Dirac, P.A.M. A new basis for cosmology. Proc. Roy. Soc. Lond. A
**1938**, 165, 199–208. [Google Scholar] [CrossRef] - Unziker, A. A Look at the Abandoned Contributions to Cosmology of Dirac, Sciama and Dicke. Ann. Phys.
**2009**, 18, 53–70. [Google Scholar] [CrossRef] - Bousso, R. The Holographic principle. Rev. Mod. Phys.
**2002**, 74, 825–874. [Google Scholar] [CrossRef] - Bousso, R. The holographc principle for general backgrounds. Class. Quantum Gravity
**2000**, 17, 997–1005. [Google Scholar] [CrossRef] - Howard, E.M. Entropy of Causal Horizons. J. Appl. Math. Phys.
**2016**, 4, 2290–3000. [Google Scholar] [CrossRef] - Bekenstein, J.D. A universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D
**1981**, 23, 287–298. [Google Scholar] [CrossRef] - Raine, D.J. Mach’s Principle in General Relativity. Mon. Not. R. Astron. Soc.
**1975**, 171, 507–528. [Google Scholar] [CrossRef] - Barbour, J.B.; Bertotti, B. Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A
**1982**, A382, 295–306. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Schlatter, A.; Kastner, R.E.
On Mach’s Principle in Entropic Gravity. *Foundations* **2024**, *4*, 146-155.
https://doi.org/10.3390/foundations4020011

**AMA Style**

Schlatter A, Kastner RE.
On Mach’s Principle in Entropic Gravity. *Foundations*. 2024; 4(2):146-155.
https://doi.org/10.3390/foundations4020011

**Chicago/Turabian Style**

Schlatter, A., and R. E. Kastner.
2024. "On Mach’s Principle in Entropic Gravity" *Foundations* 4, no. 2: 146-155.
https://doi.org/10.3390/foundations4020011