# Deriving an Electric Wave Equation from Weber’s Electrodynamics

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Weber’s Electrodynamics

## 3. Vacuum Polarization

## 4. Derivation of Electric Wave Equation

## 5. Longitudinal Electric Wave

## 6. Discussion

## 7. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Tran, M. Evidence for Maxwell’s equations, fields, force laws and alternative theories of classical electrodynamics. Eur. J. Phys.
**2018**, 39, 063001. [Google Scholar] [CrossRef][Green Version] - Baumgärtel, C.; Maher, S. Foundations of Electromagnetism: A Review of Wilhelm Weber’s Electrodynamic Force Law. Foundations
**2022**, 2, 949–980. [Google Scholar] [CrossRef] - Baumgärtel, C.; Smith, R.T.; Maher, S. Accurately predicting electron beam deflections in fringing fields of a solenoid. Sci. Rep.
**2020**, 10, 10903. [Google Scholar] [CrossRef] [PubMed] - Baumgärtel, C.; Maher, S. A Charged Particle Model Based on Weber Electrodynamics for Electron Beam Trajectories in Coil and Solenoid Elements. Prog. Electromagn. Res. C
**2022**, 123, 151–166. [Google Scholar] [CrossRef] - Kühn, S. Experimental investigation of an unusual induction effect and its interpretation as a necessary consequence of Weber electrodynamics. J. Electr. Eng.
**2021**, 72, 366–373. [Google Scholar] [CrossRef] - Kühn, S. Experimental confirmation of Weber electrodynamics against Maxwell electrodynamics. Vixra
**2019**, 1–18. [Google Scholar] - Kühn, S. On the wave-particle duality of a Hertzian dipole. TechRxiv
**2023**, preprint. [Google Scholar] [CrossRef] - Li, Q. Electric Field Theory Based on Weber’s Electrodynamics. Int. J. Magn. Electromagn.
**2021**, 7, 039. [Google Scholar] - Li, Q. Extending Weber’s Electrodynamics to High Velocity Particles. Int. J. Magn. Electromagn.
**2022**, 8, 1–9. [Google Scholar] - Montes, J.M. On the Modernisation of Weber’s Electrodynamics. Magnetism
**2023**, 3, 102–120. [Google Scholar] [CrossRef] - Baumgärtel, C.; Maher, S. Resolving the Paradox of Unipolar Induction—New Experimental Evidence on the Influence of the Test Circuit. Sci. Rep.
**2022**, 12, 16791. [Google Scholar] [CrossRef] [PubMed] - Sherwin, C.W. The Weber radar. Phys. Essays
**1991**, 4, 417–419. [Google Scholar] [CrossRef] - Clemente, R.A.; Cesar, R.G. Cold plasma oscillations according to Weber’s law an unphysical result. Int. J. Theor. Phys.
**1993**, 32, 1257–1260. [Google Scholar] [CrossRef] - Assis, A. The meaning of the constant c in Weber’s electrodynamics. In Proceeding of the International Conference Galileo Back in Italy II; Monti, R., Ed.; Societá Editrice Andromeda: Bologna, Italy, 2000; pp. 23–36. [Google Scholar]
- Assis, A.K.T.; Hernandes, J. Telegraphy equation from Weber’s electrodynamics. IEEE Trans. Circuits Syst. II Express Briefs
**2005**, 52, 289–292. [Google Scholar] [CrossRef][Green Version] - Wesley, J. Weber electrodynamics extended to include radiation. Specul. Sci. Technol.
**1987**, 10, 50–53. [Google Scholar] - Kühn, S. Inhomogeneous wave equation, Liénard-Wiechert potentials, and Hertzian dipoles in Weber electrodynamics. Electromagnetics
**2022**, 42, 571–593. [Google Scholar] [CrossRef] - Weinberg, S. Foundations. In The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 2002; Volume I, ISBN 978-0-521-55001-7. [Google Scholar]
- Karbstein, F. Probing Vacuum Polarization Effects with High-Intensity Lasers. Particles
**2020**, 3, 39–61. [Google Scholar] [CrossRef][Green Version] - Fukai, J. A Promenade along Electrodynamics; Vales Lake Publishing: Pueblo West, CO, USA, 2003. [Google Scholar]
- Assis, A.K.T.; Tajmar, M. Rotation of a superconductor due to electromagnetic induction using Weber’s electrodynamics. Ann. Fond. Louis Broglie
**2019**, 44, 111–123. [Google Scholar] - Feynman, R.P.; Leighton, R.B.; Sands, M. Feynman Lectures on Physics; Addison-Wesley: Boston, MA, USA, 1964; Volume 2, ISBN 0-201-02117-X. [Google Scholar]
- Gurnett, D.A. Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781107027374. [Google Scholar]
- Maluenda, D.; Aviñoá, M.; Ahmadi, K.; Martínez-Herrero, R.; Carnicer, A. Experimental estimation of the longitudinal component of a highly focused electromagnetic field. Sci. Rep.
**2021**, 11, 17992. [Google Scholar] [CrossRef] - Bruhn, G.W. Can longitudinal electromagnetic waves exist? J. Sci. Explor.
**2002**, 16, 359–362. [Google Scholar] - Zaimidoroga, O. An electroscalar energy of the Sun: Observation and research. J. Mod. Phys.
**2016**, 7, 806–818. [Google Scholar] [CrossRef][Green Version] - Monstein, C.; Wesley, J.P. Observation of scalar longitudinal electrodynamic waves. Europhys. Lett.
**2002**, 59, 514–520. [Google Scholar] [CrossRef] - Butterworth, E.; Allison, C.; Cavazos, D.; Mullen, F. Longitudinal electromagnetic waves? The Monstein-Wesley experiment reconstructed. J. Sci. Explor
**2013**, 27, 13–23. [Google Scholar] - Zhakatayev, A.; Tlebaldiyeva, L. Long-range longitudinal electric wave in vacuum radiated by electric dipole: Part I. Radio Sci.
**2020**, 55, e2019RS006881. [Google Scholar] [CrossRef] - Esquivel Sirvent, R. The force of the void. The Casimir effect. Nano world. Interdiscip. J. Nanosci. Nanotechnol.
**2011**, 4, 1. [Google Scholar] [CrossRef] - Cen, J.; Yuan, P.; Xue, S. Observation of the Optical and Spectral Characteristics of Ball Lightning. Phys. Rev. Lett.
**2014**, 112, 035001. [Google Scholar] [CrossRef]

**Figure 1.**Sketch of vacuum postulated as a polarizable material. The positive–negative charge pairs are not dipoles since the charges can fully overlap each other when ${\stackrel{\u20d1}{D}}_{+}=-{\stackrel{\u20d1}{D}}_{-}=0$.

**Figure 2.**Sketch of physical quantities at the origin, $\stackrel{\u20d1}{0}$, and at $\stackrel{\u20d1}{r}$.

**Figure 3.**Sketch of charges in the volume element $d\stackrel{\xb4}{V}$ on the spherical shell, and charges in the volume element $dV$ at the origin. $ds$ is an area on the shell and $dr$ is the thickness of the shell.

Symbol | Meaning | Symbol | Meaning |
---|---|---|---|

$\stackrel{\u20d1}{F}$ | Total force. | $Q$, $q$ | Electrical charges. |

${\stackrel{\u20d1}{F}}_{c}$ | Integrated static (Coulomb) force. | ${\epsilon}_{0}$ | Dielectric constant. |

${\stackrel{\u20d1}{F}}_{v}$ | Integrated velocity related force. | $c$ | Speed of light. |

${\stackrel{\u20d1}{F}}_{a}$ | Integrated acceleration related force. | $\widehat{r}$ | Unit vector. |

$\stackrel{\u20d1}{f}$ | Force between two parcels of charges. | $r$ | Distance between the two charges. |

${\stackrel{\u20d1}{f}}_{c}$ | Static (Coulomb) force. | $\stackrel{\u20d1}{v}$ | Relative velocity. |

${\stackrel{\u20d1}{f}}_{v}$ | Velocity related force. | $\stackrel{\u20d1}{a}$ | Relative acceleration. |

${\stackrel{\u20d1}{f}}_{a}$ | Acceleration related force. | $\stackrel{\u20d1}{E}$ | External electric field. |

${\stackrel{\u20d1}{D}}_{+}$,${\stackrel{\u20d1}{D}}_{-}$ | Displacement of positive and negative charges. | $g\left(\right)$ | Relationship between the electric field and the displacement field. |

${\stackrel{\u20d1}{v}}_{+}$,${\stackrel{\u20d1}{v}}_{-}$ | Velocity of positive and negative charges. | $\nabla \xb7$ | Divergence operator. |

${\stackrel{\u20d1}{a}}_{+}$,${\stackrel{\u20d1}{a}}_{-}$ | Acceleration of positive and negative charges. | $O\left({\stackrel{\u20d1}{r}}^{2}\right)$ | Higher-order terms. |

${\rho}_{+}$,${\rho}_{-}$ | Absolute density of positive and negative charges. | $\xb7$ | Dot product of vector. |

$\rho $ | Average density of positive and negative charges. | $\nabla $ | Gradient operator. |

${\rho}_{-}\left(\stackrel{\u20d1}{r}\right)$ | Density of negative charge at location $\stackrel{\u20d1}{r}$. Similar symbol for positive charge. | $dV$ | Small parcel at origin. |

${\stackrel{\u20d1}{v}}_{-}\left(\stackrel{\u20d1}{r}\right)$ | Velocity of negative charge at location $\stackrel{\u20d1}{r}$. | $d\stackrel{\xb4}{V}$ | Small parcel at location $\stackrel{\u20d1}{r}$ on the shell. |

${\stackrel{\u20d1}{a}}_{-}\left(\stackrel{\u20d1}{r}\right)$ | Acceleration of negative charge at location $\stackrel{\u20d1}{r}$. | $ds$ | Small area on the shell. |

${\rho}_{-}\left(\stackrel{\u20d1}{0}\right)$ | Density of negative charge at origin. | $dr$ | Thickness of the shell. |

${\stackrel{\u20d1}{v}}_{-}\left(\stackrel{\u20d1}{0}\right)$ | Velocity of negative charge at origin. | $\frac{\partial}{\partial t}$ | Eulerian derivative. |

${\stackrel{\u20d1}{a}}_{-}\left(\stackrel{\u20d1}{0}\right)$ | Acceleration of negative charge at origin. | $\frac{d}{dt}$ | Lagrangian derivative. |

$\chi $ | Constant scalar. | $\nabla \times $ | Curl operator. |

$\mathsf{\Phi}$ | Scalar potential. | ${\nabla}^{2}$ | Laplacian operator. |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, Q.; Maher, S.
Deriving an Electric Wave Equation from Weber’s Electrodynamics. *Foundations* **2023**, *3*, 323-334.
https://doi.org/10.3390/foundations3020024

**AMA Style**

Li Q, Maher S.
Deriving an Electric Wave Equation from Weber’s Electrodynamics. *Foundations*. 2023; 3(2):323-334.
https://doi.org/10.3390/foundations3020024

**Chicago/Turabian Style**

Li, Qingsong, and Simon Maher.
2023. "Deriving an Electric Wave Equation from Weber’s Electrodynamics" *Foundations* 3, no. 2: 323-334.
https://doi.org/10.3390/foundations3020024