Previous Issue
Volume 4, March
 
 

Dynamics, Volume 4, Issue 2 (June 2024) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 13364 KiB  
Article
Computational Fluid Dynamics Methodology to Estimate the Drag Coefficient of Balls in Rolling Element Bearings
by Yann Marchesse, Christophe Changenet and Fabrice Ville
Dynamics 2024, 4(2), 303-321; https://doi.org/10.3390/dynamics4020018 (registering DOI) - 25 Apr 2024
Viewed by 118
Abstract
The emergence of electric vehicles has brought new issues such as the problem of rolling element bearings (REBs) operating at high speeds. Losses due to these components in mechanical transmissions are a key issue and must therefore be taken into account right from [...] Read more.
The emergence of electric vehicles has brought new issues such as the problem of rolling element bearings (REBs) operating at high speeds. Losses due to these components in mechanical transmissions are a key issue and must therefore be taken into account right from the design stage of these systems. Among these losses, the one induced by the motion of rolling elements, known as drag loss, becomes predominant in high-speed REBs. Although an experimental approach is still possible, it is difficult to isolate this loss in order to study it properly. A numerical approach based on CFD is therefore a possible way forward, even if other issues arise. The aim of this article is to study the ability of such an approach to correctly estimate the drag coefficient associated with the motion of rolling elements. The influence of the numerical domain extension, the mesh refinement, the simplification of the ring shape, and the presence of the cage on the values of the drag coefficient is presented. While it seems possible to compromise on the calculation domain and mesh size, it appears that the other parameters must be taken into account as much as possible to obtain realistic results. Full article
Show Figures

Figure 1

16 pages, 8922 KiB  
Article
SPH Simulation of Molten Metal Flow Modeling Lava Flow Phenomena with Solidification
by Shingo Tomita, Joe Yoshikawa, Makoto Sugimoto, Hisaya Komen and Masaya Shigeta
Dynamics 2024, 4(2), 287-302; https://doi.org/10.3390/dynamics4020017 - 19 Apr 2024
Viewed by 264
Abstract
Characteristic dynamics in lava flows, such as the formation processes of lava levees, toe-like tips, and overlapped structures, were reproduced successfully through numerical simulation using the smoothed particle hydrodynamics (SPH) method. Since these specific phenomena have a great influence on the flow direction [...] Read more.
Characteristic dynamics in lava flows, such as the formation processes of lava levees, toe-like tips, and overlapped structures, were reproduced successfully through numerical simulation using the smoothed particle hydrodynamics (SPH) method. Since these specific phenomena have a great influence on the flow direction of lava flows, it is indispensable to elucidate them for accurate predictions of areas where lava strikes. At the first step of this study, lava was expressed using a molten metal with known physical properties. The computational results showed that levees and toe-like tips formed at the fringe of the molten metal flowing down on a slope, which appeared for actual lava flows as well. The dynamics of an overlapped structure formation were also simulated successfully; therein, molten metal flowed down, solidified, and changed the surface shape of the slope, and the second molten metal flowed over the changed surface shape. It was concluded that the computational model developed in this study using the SPH method is applicable for simulating and clarifying lava flow phenomena. Full article
(This article belongs to the Special Issue Recent Advances in Dynamic Phenomena—2nd Edition)
Show Figures

Figure 1

15 pages, 659 KiB  
Article
Auto-Correlation Functions of Chaotic Binary Sequences Obtained by Alternating Two Binary Functions
by Akio Tsuneda
Dynamics 2024, 4(2), 272-286; https://doi.org/10.3390/dynamics4020016 - 16 Apr 2024
Viewed by 213
Abstract
This paper discusses the auto-correlation functions of chaotic binary sequences obtained by a one-dimensional chaotic map and two binary functions. The two binary functions are alternately used to obtain a binary sequence from a chaotic real-valued sequence. We consider two similar methods and [...] Read more.
This paper discusses the auto-correlation functions of chaotic binary sequences obtained by a one-dimensional chaotic map and two binary functions. The two binary functions are alternately used to obtain a binary sequence from a chaotic real-valued sequence. We consider two similar methods and give the theoretical auto-correlation functions of the new binary sequences, which are expressed by the auto-/cross-correlation functions of the two chaotic binary sequences generated by a single binary function. Furthermore, some numerical experiments are performed to confirm the validity of the theoretical auto-correlation functions. Full article
Show Figures

Figure 1

18 pages, 5288 KiB  
Article
System Identification Using Self-Adaptive Filtering Applied to Second-Order Gradient Materials
by Thomas Kletschkowski
Dynamics 2024, 4(2), 254-271; https://doi.org/10.3390/dynamics4020015 - 07 Apr 2024
Viewed by 241
Abstract
For many engineering applications, it is sufficient to use the concept of simple materials. However, higher gradients of the kinematic variables are taken into account to model materials with internal length scales as well as to describe localization effects using gradient theories in [...] Read more.
For many engineering applications, it is sufficient to use the concept of simple materials. However, higher gradients of the kinematic variables are taken into account to model materials with internal length scales as well as to describe localization effects using gradient theories in finite plasticity or fluid mechanics. In many approaches, length scale parameters have been introduced that are related to a specific micro structure. An alternative approach is possible, if a thermodynamically consistent framework is used for material modeling, as shown in the present contribution. However, even if sophisticated and thermodynamically consistent material models can be established, there are still not yet standard experiments to determine higher order material constants. In order to contribute to this ongoing discussion, system identification based on the method of self-adaptive filtering is proposed in this paper. To evaluate the effectiveness of this approach, it has been applied to second-order gradient materials considering longitudinal vibrations. Based on thermodynamically consistent models that have been solved numerically, it has been possible to prove that system identification based on self-adaptive filtering can be used effectively for both narrow-band and broadband signals in the field of second-order gradient materials. It has also been found that the differences identified for simple materials and gradient materials allow for condition monitoring and detection of gradient effects in the material behavior. Full article
(This article belongs to the Special Issue Recent Advances in Dynamic Phenomena—2nd Edition)
Show Figures

Figure 1

21 pages, 74549 KiB  
Article
A Versatile Deposition Model for Natural and Processed Surfaces
by Cihan Ates, Rainer Koch and Hans-Jörg Bauer
Dynamics 2024, 4(2), 233-253; https://doi.org/10.3390/dynamics4020014 - 30 Mar 2024
Viewed by 504
Abstract
This paper introduces a robust deposition model designed for exploring the growth dynamics of deposits on surfaces under practical conditions. The study addresses the challenge of characterizing the intricate morphology of deposits, exhibiting significant visual variations. A generative approach is deployed to create [...] Read more.
This paper introduces a robust deposition model designed for exploring the growth dynamics of deposits on surfaces under practical conditions. The study addresses the challenge of characterizing the intricate morphology of deposits, exhibiting significant visual variations. A generative approach is deployed to create diverse natural and engineered surface textures, governed by probabilistic principles. The model’s formulation addresses key questions related to deposition initiation, nucleation point behaviour, spatial scaling, deposit growth rates, spread dynamics, and surface mobility. A versatile algorithm, relying on six parameters and employing nested loops and Gaussian sampling, is developed. The algorithm’s efficacy is examined through extensive simulations, involving variations in nucleation scaling densities, aggregate scaling scenarios, spread factors, and diffusion rates. Surface statistics are computed for simulated deposits and analyzed using Fast Fourier Transform (FFT). The resulting database enables quantitative comparisons of surfaces generated with different parameters, where the database-derived parallel coordinates offer guidance for selecting optimal model parameters to achieve desired surface morphologies. The proposed approach is validated against urea-derived deposits, exhibiting statistical consistency and agreement with experimental observations. Overall, the model’s adaptable framework holds promise for understanding and predicting deposit growth on surfaces in diverse practical scenarios. Full article
Show Figures

Figure 1

11 pages, 517 KiB  
Article
Dynamics and Stability of Double-Walled Carbon Nanotube Cantilevers Conveying Fluid in an Elastic Medium
by Vassil M. Vassilev and Galin S. Valchev
Dynamics 2024, 4(2), 222-232; https://doi.org/10.3390/dynamics4020013 - 27 Mar 2024
Viewed by 385
Abstract
The paper concerns the dynamics and stability of double-walled carbon nanotubes conveying fluid. The equations of motion adopted in the current study to describe the dynamics of such nano-pipes stem from the classical Bernoulli–Euler beam theory. Several additional terms are included in the [...] Read more.
The paper concerns the dynamics and stability of double-walled carbon nanotubes conveying fluid. The equations of motion adopted in the current study to describe the dynamics of such nano-pipes stem from the classical Bernoulli–Euler beam theory. Several additional terms are included in the basic equations in order to take into account the influence of the conveyed fluid, the impact of the surrounding medium and the effect of the van der Waals interaction between the inner and outer single-walled carbon nanotubes constituting a double-walled one. In the present work, the flow-induced vibrations of the considered nano-pipes are studied for different values of the length of the pipe, its inner radius, the characteristics of the ambient medium and the velocity of the fluid flow, which is assumed to be constant. The critical fluid flow velocities are obtained at which such a cantilevered double-walled carbon nanotube embedded in an elastic medium loses stability. Full article
Show Figures

Figure 1

14 pages, 6212 KiB  
Article
Exploiting Domain Partition in Response Function-Based Dynamic Surrogate Modeling: A Continuous Crystallizer Study
by Alessandro Di Pretoro, Ludovic Montastruc and Stéphane Negny
Dynamics 2024, 4(2), 208-221; https://doi.org/10.3390/dynamics4020012 - 26 Mar 2024
Viewed by 251
Abstract
Given the exponential rise in the amount of data requiring processing in all engineering fields, phenomenological models have become computationally cumbersome. For this reason, more efficient data-driven models have been recently used with the purpose of substantially reducing simulation computational times. However, especially [...] Read more.
Given the exponential rise in the amount of data requiring processing in all engineering fields, phenomenological models have become computationally cumbersome. For this reason, more efficient data-driven models have been recently used with the purpose of substantially reducing simulation computational times. However, especially in process engineering, the majority of the proposed surrogate models address steady-state problems, while poor studies refer to dynamic simulation modeling. For this reason, using a response function-based approach, a crystallization unit case study was set up in order to derive a dynamic data-driven model for crystal growth whose characteristic differential parameters are derived via Response Surface Methodology. In particular, multiple independent variables were considered, and a well-established sampling technique was exploited for sample generation. Then, different sample sizes were tested and compared in terms of accuracy indicators. Finally, the domain partition strategy was exploited in order to show its relevant impact on the final model accuracy. In conclusion, the outcome of this study proved that the proposed procedure is a suitable methodology for dynamic system metamodeling, as it shows good compliance and relevant improvement in terms of computational time. In terms of future research perspectives, testing the proposed procedure on different systems and in other research fields would allow for greater improvement and would, eventually, extend its validity. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop