Administration of Collagen Peptide Prevents the Progression of Pulmonary Fibrosis in Bleomycin-Treated Mice
Abstract
:1. Introduction
2. Results
2.1. Body Weight and Food Intake
2.2. Weight of Organs
2.3. Hydroxyproline Content in Lung Tissue
2.4. Expression Levels of Fibrosis-Related Genes in Lung Tissue
2.5. Expression Levels of Inflammatory Cytokine Genes in Lung Tissue
2.6. Histological Analysis of Lung Tissue
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Diet
4.2. Experimental Design
4.3. Histological Analysis of Lung Tissue
4.4. Determination of Hydroxyproline Content in Lung Tissue
4.5. RNA Isolation and cDNA Preparation from Lung Tissue
4.6. Quantitative Analysis of Gene Expression by Real-Time PCR
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moeller, A.; Ask, K.; Warburton, D.; Gauldie, J.; Kolb, M. The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis. Int. J. Biochem. Cell Biol. 2008, 40, 362–382. [Google Scholar] [CrossRef][Green Version]
- Maher, T.M.; Strek, M.E. Antifibrotic therapy for idiopathic pulmonary fibrosis: Time to treat. Respir. Res. 2019, 20, 205. [Google Scholar] [CrossRef][Green Version]
- Raghu, G.; Weycker, D.; Edelsberg, J.; Bradford, W.Z.; Oster, G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 810–816. [Google Scholar] [CrossRef][Green Version]
- Ji, Y.; Dou, Y.N.; Zhao, Q.W.; Zhang, J.Z.; Yang, Y.; Wang, T.; Xia, Y.F.; Dai, Y.; Wei, Z.F. Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacol. Sin. 2016, 37, 794–804. [Google Scholar] [CrossRef][Green Version]
- Bolourani, S.; Sari, E.; Brenner, M.; Wang, P. The role of eCIRP in bleomycin-induced pulmonary fibrosis in mice. PLoS ONE 2022, 17, e0266163. [Google Scholar] [CrossRef]
- Usuki, J.; Fukuda, Y. Evolution of three patterns of intra-alveolar fibrosis produced by bleomycin in rats. Pathol. Int. 1995, 45, 552–564. [Google Scholar] [CrossRef]
- Izbicki, G.; Segel, M.J.; Christensen, T.G.; Conner, M.W.; Breuer, R. Time course of bleomycin-induced lung fibrosis. Int. J. Exp. Pathol. 2002, 83, 111–119. [Google Scholar] [CrossRef]
- Braun, R.K.; Ferrick, D.A.; Sterner-Kock, A.; Kilshaw, P.J.; Hyde, D.M.; Giri, S.N. Comparison of two models of bleomycin-induced lung fibrosis in mouse on the level of leucocytes and T cell subpopulations in bronchoalveolar lavage. Comp. Haematol. Int. 1996, 6, 141–148. [Google Scholar] [CrossRef]
- Chua, F.; Gauldie, J.; Laurent, G.J. Pulmonary fibrosis: Searching for model answers. Am. J. Respir. Cell Mol. Biol. 2005, 33, 9–13. [Google Scholar] [CrossRef]
- Yamamoto, T.; Takagawa, S.; Katayama, I.; Yamazaki, K.; Hamazaki, Y.; Shinkai, H.; Nishioka, K. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J. Investig. Dermatol. 1999, 112, 456–462. [Google Scholar] [CrossRef][Green Version]
- Liang, M.; Lv, J.; Zou, L.; Yang, W.; Xiong, Y.; Chen, X.; Guan, M.; He, R.; Zou, H. A modified murine model of systemic sclerosis: Bleomycin given by pump infusion induced skin and pulmonary inflammation and fibrosis. Lab. Investig. 2015, 95, 342–350. [Google Scholar] [CrossRef][Green Version]
- Iwai, K.; Hasegawa, T.; Taguchi, Y.; Morimatsu, F.; Sato, K.; Nakamura, Y.; Higashi, A.; Kido, Y.; Nakabo, Y.; Ohtsuki, K. Identification of food-derived collagen peptides in human blood after oral ingestion of gelatin hydrolysates. J. Agric. Food Chem. 2005, 53, 6531–6536. [Google Scholar] [CrossRef]
- Watanabe-Kamiyama, M.; Shimizu, M.; Kamiyama, S.; Taguchi, Y.; Sone, H.; Morimatsu, F.; Shirakawa, H.; Furukawa, Y.; Komai, M. Absorption and effectiveness of orally administered low molecular weight collagen hydrolysate in rats. J. Agric. Food Chem. 2010, 58, 835–841. [Google Scholar] [CrossRef]
- Yamamoto, S.; Hayasaka, F.; Deguchi, K.; Okudera, T.; Furusawa, T.; Sakai, Y. Absorption and plasma kinetics of collagen tripeptide after peroral or intraperitoneal administration in rats. Biosci. Biotechnol. Biochem. 2015, 79, 2026–2033. [Google Scholar] [CrossRef][Green Version]
- Asai, T.; Takahashi, A.; Ito, K.; Uetake, T.; Matsumura, Y.; Ikeda, K.; Inagaki, N.; Nakata, M.; Imanishi, Y.; Sato, K. Amount of Collagen in the Meat Contained in Japanese Daily Dishes and the Collagen Peptide Content in Human Blood after Ingestion of Cooked Fish Meat. J. Agric. Food Chem. 2019, 67, 2831–2838. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fujioka, M.; Sugimoto, K.; Mu, G.; Ishimi, Y. Assessment of effectiveness of oral administration of collagen peptide on bone metabolism in growing and mature rats. J. Bone Miner. Metab. 2004, 22, 547–553. [Google Scholar] [CrossRef]
- Moskowitz, R.W. Role of collagen hydrolysate in bone and joint disease. Semin. Arthritis Rheum. 2000, 30, 87–99. [Google Scholar] [CrossRef]
- Bello, A.E.; Oesser, S. Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: A review of the literature. Curr. Med. Res. Opin. 2006, 22, 2221–2232. [Google Scholar] [CrossRef]
- Kashiuchi, S.; Miyazawa, R.; Nagata, H.; Shirai, M.; Shimizu, M.; Sone, H.; Kamiyama, S. Effects of administration of glucosamine and chicken cartilage hydrolysate on rheumatoid arthritis in SKG mice. Food Funct. 2019, 10, 5008–5017. [Google Scholar] [CrossRef]
- Kumar, S.; Sugihara, F.; Suzuki, K.; Inoue, N.; Venkateswarathirukumara, S. A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptide on osteoarthritis. J. Sci. Food Agric. 2015, 95, 702–707. [Google Scholar] [CrossRef]
- Saiga, A.; Iwai, K.; Hayakawa, T.; Takahata, Y.; Kitamura, S.; Nishimura, T.; Morimatsu, F. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J. Agric. Food Chem. 2008, 56, 9586–9591. [Google Scholar] [CrossRef]
- Kouguchi, T.; Ohmori, T.; Shimizu, M.; Takahata, Y.; Maeyama, Y.; Suzuki, T.; Morimatsu, F.; Tanabe, S. Effects of a chicken collagen hydrolysate on the circulation system in subjects with mild hypertension or high-normal blood pressure. Biosci. Biotechnol. Biochem. 2013, 77, 691–696. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Iba, Y.; Yokoi, K.; Eitoku, I.; Goto, M.; Koizumi, S.; Sugihara, F.; Oyama, H.; Yoshimoto, T. Oral Administration of Collagen Hydrolysates Improves Glucose Tolerance in Normal Mice Through GLP-1-Dependent and GLP-1-Independent Mechanisms. J. Med. Food 2016, 19, 836–843. [Google Scholar] [CrossRef]
- Devasia, S.; Kumar, S.; Stephena, P.S.; Inoue, N.; Sugihara, F.; Suzuki, K. Double blind, randomized clinical study to evaluate efficacy of collagen peptide as add on nutritional supplement in type 2 diabetes. J. Clin. Nutr. Food Sci. 2018, 1, 6–11. [Google Scholar]
- Zhu, C.; Zhang, W.; Mu, B.; Zhang, F.; Lai, N.; Zhou, J.; Xu, A.; Liu, J.; Li, Y. Effects of marine collagen peptides on glucose metabolism and insulin resistance in type 2 diabetic rats. J. Food Sci. Technol. 2017, 54, 2260–2269. [Google Scholar] [CrossRef]
- Saito, M.; Kiyose, C.; Higuchi, T.; Uchida, N.; Suzuki, H. Effect of collagen hydrolysates from salmon and trout skins on the lipid profile in rats. J. Agric. Food Chem. 2009, 57, 10477–10482. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.; Noh, J.S. Regulatory Effects of Skate Skin-Derived Collagen Peptides with Different Molecular Weights on Lipid Metabolism in the Liver and Adipose Tissue. Biomedicines 2020, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Yamaguchi, M.; Watanabe, K.; Shimizu, M.; Azusa, T.; Sone, H.; Kamiyama, S. Effects of Collagen Peptide Administration on Visceral Fat Content in High-Fat Diet-Induced Obese Mice. J. Nutr. Sci. Vitaminol. 2021, 67, 57–62. [Google Scholar] [CrossRef]
- Tak, Y.J.; Kim, Y.J.; Lee, J.G.; Yi, Y.H.; Cho, Y.H.; Kang, G.H.; Lee, S.Y. Effect of Oral Ingestion of Low-Molecular Collagen Peptides Derived from Skate (Raja Kenojei) Skin on Body Fat in Overweight Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Mar. Drugs 2019, 17, 157. [Google Scholar] [CrossRef][Green Version]
- Sleijfer, S. Bleomycin-induced pneumonitis. Chest 2001, 120, 617–624. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Claussen, C.A.; Long, E.C. Nucleic Acid recognition by metal complexes of bleomycin. Chem. Rev. 1999, 99, 2797–2816. [Google Scholar] [CrossRef]
- Burger, R.M.; Peisach, J.; Horwitz, S.B. Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA. J. Biol. Chem. 1981, 256, 11636–11644. [Google Scholar] [CrossRef]
- Wang, J.; Luo, D.; Liang, M.; Zhang, T.; Yin, X.; Zhang, Y.; Yang, X.; Liu, W. Spectrum-Effect Relationships between High-Performance Liquid Chromatography (HPLC) Fingerprints and the Antioxidant and Anti-Inflammatory Activities of Collagen Peptides. Molecules 2018, 23, 3257. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.P.; Liang, C.H.; Wu, H.T.; Pang, H.Y.; Chen, C.; Wang, G.H.; Chan, L.P. Antioxidant and anti-inflammatory capacities of collagen peptides from milkfish (Chanos chanos) scales. J. Food Sci. Technol. 2018, 55, 2310–2317. [Google Scholar] [CrossRef]
- Kobayashi, K.; Maehata, Y.; Kawamura, Y.; Kusubata, M.; Hattori, S.; Tanaka, K.; Miyamoto, C.; Yoshino, F.; Yoshida, A.; Wada-Takahashi, S.; et al. Direct assessments of the antioxidant effects of the novel collagen peptide on reactive oxygen species using electron spin resonance spectroscopy. J. Pharmacol. Sci. 2011, 116, 97–106. [Google Scholar] [CrossRef][Green Version]
- Xie, Z.; Wang, X.; Yu, S.; He, M.; Yu, S.; Xiao, H.; Song, Y. Antioxidant and functional properties of cowhide collagen peptides. J. Food Sci. 2021, 86, 1802–1818. [Google Scholar] [CrossRef]
- Shigemura, Y.; Iwai, K.; Morimatsu, F.; Iwamoto, T.; Mori, T.; Oda, C.; Taira, T.; Park, E.Y.; Nakamura, Y.; Sato, K. Effect of Prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J. Agric. Food Chem. 2009, 57, 444–449. [Google Scholar] [CrossRef]
- Asai, T.T.; Oikawa, F.; Yoshikawa, K.; Inoue, N.; Sato, K. Food-Derived Collagen Peptides, Prolyl-Hydroxyproline (Pro-Hyp), and Hydroxyprolyl-Glycine (Hyp-Gly) Enhance Growth of Primary Cultured Mouse Skin Fibroblast Using Fetal Bovine Serum Free from Hydroxyprolyl Peptide. Int. J. Mol. Sci. 2019, 21, 229. [Google Scholar] [CrossRef][Green Version]
- Lee, J.K.; Chung, C.; Kim, J.; Cho, H.S.; Kim, H.C. Clinical impact of weight loss on mortality in patients with idiopathic pulmonary fibrosis: A retrospective cohort study. Sci. Rep. 2023, 13, 5774. [Google Scholar] [CrossRef]
- Reinert, T.; Baldotto, C.S.D.R.; Nunes, F.A.P.; Scheliga, A.A.D.S. Bleomycin-induced lung injury. J. Cancer Res. 2013, 2013, 480608. [Google Scholar] [CrossRef][Green Version]
- Borthwick, L.A.; Wynn, T.A.; Fisher, A.J. Cytokine mediated tissue fibrosis. Biochim. Biophys. Acta 2013, 1832, 1049–1060. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chaudhary, N.I.; Schnapp, A.; Park, J.E. Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am. J. Respir. Crit. Care Med. 2006, 173, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Junqueira, L.C.; Bignolas, G.; Brentani, R.R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 1979, 11, 447–455. [Google Scholar] [CrossRef]
- Ashcroft, T.; Simpson, J.M.; Timbrell, V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol. 1988, 41, 467–470. [Google Scholar] [CrossRef][Green Version]
Ctrl | BLM-CS | BLM-CP | ||
---|---|---|---|---|
Body weight | (g) | 27.2 ± 0.22 a | 23.6 ± 0.74 b | 24.8 ± 0.25 b |
Heart | (g) | 0.125 ± 0.003 | 0.119 ± 0.004 | 0.117 ± 0.003 |
(mg/g BW) | 4.58 ± 0.126 | 5.12 ± 0.329 | 4.73 ± 0.133 | |
Kidney | (g) | 0.370 ± 0.010 a | 0.317 ± 0.006 b | 0.304 ± 0.007 b |
(mg/g BW) | 13.6 ± 0.38 | 13.6 ± 0.62 | 12.3 ± 0.30 | |
Liver | (g) | 1.14 ± 0.04 | 1.08 ± 0.04 | 1.13 ± 0.03 |
(mg/g BW) | 41.7 ± 1.35 | 46.3 ± 2.02 | 45.6 ± 0.89 | |
Lung | (g) | 0.176 ± 0.007 a | 0.294 ± 0.015 b | 0.250 ± 0.007 c |
(mg/g BW) | 6.48 ± 0.26 a | 12.7 ± 1.07 b | 10.1 ± 0.33 c | |
Spleen | (g) | 0.089 ± 0.005 | 0.081 ± 0.006 | 0.086 ± 0.002 |
(mg/g BW) | 3.28 ± 0.198 | 3.44 ± 0.255 | 3.48 ± 0.092 |
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Accession Number |
---|---|---|---|
Actb | CTTGGGTATGGAATCCTGTGG | GTACTTGCGCTCAGGAGGAG | NM_007393 |
Ccl2 | GTCTGTGCTGACCCCAAGAA | TGCTTGAGGTGGTTGTGGAA | NM_011333 |
Ccn2 | AGCAGCTGGGAGAACTGTGT | GCTGCTTTGGAAGGACTCAC | NM_010217 |
Col1a1 | TGACTGGAAGAGCGGAGAGT | GAATCCATCGGTCATGCTCT | NM_007742 |
Col3a1 | TGGTCCTCCAGGAGAAAATG | GACCAGGAGAACCAGAAGCA | NM_009930 |
Fn1 | TGAGCGAGGAGGGAGATGAA | TAGGTGCCTGGGGTCTACTC | NM_010233 |
Il1b | GCCCATCCTCTGTGACTCAT | AGGCCACAGGTATTTTGTCG | NM_008361 |
Il6 | CGGCCTTCCCTACTTCACAA | CAAGTGCATCATCGTTGTTCA | NM_031168 |
Tgfb1 | GTCACTGGAGTTGTACGGCA | TCATGTCATGGATGGTGCCC | NM_011577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshihara, M.; Asatsuma, C.; Masuko, A.; Iwaasa, K.; Saito-Matsuzawa, Y.; Sone, H.; Kamiyama, S. Administration of Collagen Peptide Prevents the Progression of Pulmonary Fibrosis in Bleomycin-Treated Mice. Biologics 2023, 3, 187-197. https://doi.org/10.3390/biologics3030010
Yoshihara M, Asatsuma C, Masuko A, Iwaasa K, Saito-Matsuzawa Y, Sone H, Kamiyama S. Administration of Collagen Peptide Prevents the Progression of Pulmonary Fibrosis in Bleomycin-Treated Mice. Biologics. 2023; 3(3):187-197. https://doi.org/10.3390/biologics3030010
Chicago/Turabian StyleYoshihara, Minami, Chisaki Asatsuma, Ayuna Masuko, Keiya Iwaasa, Yuki Saito-Matsuzawa, Hideyuki Sone, and Shin Kamiyama. 2023. "Administration of Collagen Peptide Prevents the Progression of Pulmonary Fibrosis in Bleomycin-Treated Mice" Biologics 3, no. 3: 187-197. https://doi.org/10.3390/biologics3030010