Next Issue
Volume 13, March
Previous Issue
Volume 12, September
 
 

BioTech, Volume 12, Issue 4 (December 2023) – 8 articles

Cover Story (view full-size image): Grey mould caused by Botrytis spp. is the most important fruit rot of strawberries worldwide. Fungicides are essential for its control, but resistance to current compounds is spreading fast. The rise of strains combining resistance to all available fungicides is a particular threat. However, as this article shows for Northern Europe, such a development can be halted or even reversed. Measures include the restricted use of fungicides according to the results of local resistance tests, the purchase of nusery material free from multi-resistant strains, the removal of mouldy fruit at least during the first harvest pickings, and aspects of cultivation. Production in tunnels or greenhouses also reduces grey mould. The key message is that a portfolio of measures will be required to control grey mould in the future. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
25 pages, 4507 KiB  
Article
Biocatalysts Based on Immobilized Lipases for the Production of Fatty Acid Ethyl Esters: Enhancement of Activity through Ionic Additives and Ion Exchange Supports
by Juan S. Pardo-Tamayo, Sebastián Arteaga-Collazos, Laura C. Domínguez-Hoyos and César A. Godoy
BioTech 2023, 12(4), 67; https://doi.org/10.3390/biotech12040067 - 18 Dec 2023
Viewed by 1307
Abstract
Ionic additives affect the structure, activity and stability of lipases, which allow for solving common application challenges, such as preventing the formation of protein aggregates or strengthening enzyme–support binding, preventing their desorption in organic media. This work aimed to design a biocatalyst, based [...] Read more.
Ionic additives affect the structure, activity and stability of lipases, which allow for solving common application challenges, such as preventing the formation of protein aggregates or strengthening enzyme–support binding, preventing their desorption in organic media. This work aimed to design a biocatalyst, based on lipase improved by the addition of ionic additives, applicable in the production of ethyl esters of fatty acids (EE). Industrial enzymes from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML), Candida antárctica B (CALB) and Lecitase®, immobilized in commercial supports like Lewatit®, Purolite® and Q-Sepharose®, were tested. The best combination was achieved by immobilizing lipase TLL onto Q-Sepharose® as it surpassed, in terms of %EE (70.1%), the commercial biocatalyst Novozyme® 435 (52.7%) and was similar to that of Lipozyme TL IM (71.3%). Hence, the impact of ionic additives like polymers and surfactants on both free and immobilized TLL on Q-Sepharose® was assessed. It was observed that, when immobilized, in the presence of sodium dodecyl sulfate (SDS), the TLL derivative exhibited a significantly higher activity, with a 93-fold increase (1.02 IU), compared to the free enzyme under identical conditions (0.011 IU). In fatty acids ethyl esters synthesis, Q-SDS-TLL novel derivatives achieved results similar to commercial biocatalysts using up to ~82 times less enzyme (1 mg/g). This creates an opportunity to develop biocatalysts with reduced enzyme consumption, a factor often associated with higher production costs. Such advancements would ease their integration into the biodiesel industry, fostering a greener production approach compared to conventional methods. Full article
Show Figures

Figure 1

17 pages, 3481 KiB  
Article
Gibberellin-Producing Bacteria Isolated from Coastal Soil Enhance Seed Germination of Mallow and Broccoli Plants under Saline Conditions
by Ji-In Woo, Md. Injamum-Ul-Hoque, Nazree Zainurin, Shifa Shaffique, Eun-Hae Kwon, Ho-Jun Gam, Jin Ryeol Jeon, In-Jung Lee, Gil-Jae Joo and Sang-Mo Kang
BioTech 2023, 12(4), 66; https://doi.org/10.3390/biotech12040066 - 11 Dec 2023
Viewed by 1739
Abstract
Salinity hinders plant growth, posing a substantial challenge to sustainable agricultural yield maintenance. The application of plant growth-promoting rhizobacteria (PGPR) offers an emerging strategy to mitigate the detrimental effects of high salinity levels. This study aimed to isolate and identify gibberellin-producing bacteria and [...] Read more.
Salinity hinders plant growth, posing a substantial challenge to sustainable agricultural yield maintenance. The application of plant growth-promoting rhizobacteria (PGPR) offers an emerging strategy to mitigate the detrimental effects of high salinity levels. This study aimed to isolate and identify gibberellin-producing bacteria and their impact on the seed germination of Malva verticillata (mallow) and Brassica oleracea var. italica (broccoli) under salt stress. In this study, seven bacterial isolates (KW01, KW02, KW03, KW04, KW05, KW06, and KW07) were used to assess their capacity for producing various growth-promoting traits and their tolerance to varying amounts of salinity (100 mM and 150 Mm NaCl). The findings revealed that KW05 and KW07 isolates outperformed other isolates in synthesizing indole-3-acetic acid, siderophores, and exopolysaccharides and in solubilizing phosphates. These isolates also enhanced phosphatase activity and antioxidant levels, including superoxide dismutase and catalase. Both KW05 and KW07 isolate highlight the growth-promoting effects of gibberellin by enhancing of growth parameters of Waito-C rice. Further, gas chromatography–mass spectrometry validation confirmed the ability of KW05 and KW07 to produce gibberellins (GAs), including GA1, GA3, GA4, and GA7. Seed germination metrics were enhanced due to the inoculation of KW05 and KW07. Moreover, inoculation with KW05 increased the fresh weight (FW) (7.82%) and total length (38.61%) of mallow under salt stress. Inoculation with KW07 increased the FW (32.04%) and shoot length of mallow under salt stress. A single inoculation of these two isolates increased broccoli plants’ FW and shoot length under salt stress. Gibberellin-producing bacteria helps in plant growth promotion by improving salt tolerance by stimulating root elongation and facilitating enhanced absorption of water and nutrient uptake in salty environments. Based on these findings, they can play a role in boosting agricultural yield in salt-affected areas, which would help to ensure the long-term viability of agriculture in coastal regions. Full article
(This article belongs to the Section Agricultural and Food Biotechnology)
Show Figures

Figure 1

11 pages, 571 KiB  
Article
Detection and Characterization of Electrogenic Bacteria from Soils
by Ana Rumora, Liliana Hopkins, Kayla Yim, Melissa F. Baykus, Luisa Martinez and Luis Jimenez
BioTech 2023, 12(4), 65; https://doi.org/10.3390/biotech12040065 - 02 Dec 2023
Viewed by 1778
Abstract
Soil microbial fuel cells (SMFCs) are bioelectrical devices powered by the oxidation of organic and inorganic compounds due to microbial activity. Seven soils were randomly selected from Bergen Community College or areas nearby, located in the state of New Jersey, USA, were used [...] Read more.
Soil microbial fuel cells (SMFCs) are bioelectrical devices powered by the oxidation of organic and inorganic compounds due to microbial activity. Seven soils were randomly selected from Bergen Community College or areas nearby, located in the state of New Jersey, USA, were used to screen for the presence of electrogenic bacteria. SMFCs were incubated at 35–37 °C. Electricity generation and electrogenic bacteria were determined using an application developed for cellular phones. Of the seven samples, five generated electricity and enriched electrogenic bacteria. Average electrical output for the seven SMFCs was 155 microwatts with the start-up time ranging from 1 to 11 days. The highest output and electrogenic bacterial numbers were found with SMFC-B1 with 143 microwatts and 2.99 × 109 electrogenic bacteria after 15 days. Optimal electrical output and electrogenic bacterial numbers ranged from 1 to 21 days. Microbial DNA was extracted from the top and bottom of the anode of SMFC-B1 using the ZR Soil Microbe DNA MiniPrep Protocol followed by PCR amplification of 16S rRNA V3-V4 region. Next-generation sequencing of 16S rRNA genes generated an average of 58 k sequences. BLAST analysis of the anode bacterial community in SMFC-B1 demonstrated that the predominant bacterial phylum was Bacillota of the class Clostridia (50%). However, bacteria belonging to the phylum Pseudomonadota (15%) such as Magnetospirillum sp. and Methylocaldum gracile were also part of the predominant electrogenic bacterial community in the anode. Unidentified uncultured bacteria accounted for 35% of the predominant bacterial community. Bioelectrical devices such as MFCs provide sustainable and clean alternatives to future applications for electricity generation, waste treatment, and biosensors. Full article
Show Figures

Figure 1

24 pages, 4054 KiB  
Review
Fungicide Resistance in Botrytis spp. and Regional Strategies for Its Management in Northern European Strawberry Production
by Roland W. S. Weber and Antonios Petridis
BioTech 2023, 12(4), 64; https://doi.org/10.3390/biotech12040064 - 19 Nov 2023
Cited by 1 | Viewed by 1168
Abstract
Grey mould, caused by Botrytis cinerea and other Botrytis spp., is a major cause of fruit rot in strawberries and other fruit crops worldwide. Repeated fungicide applications are essential in order to secure harvests. However, resistance to all currently registered single-site fungicides is [...] Read more.
Grey mould, caused by Botrytis cinerea and other Botrytis spp., is a major cause of fruit rot in strawberries and other fruit crops worldwide. Repeated fungicide applications are essential in order to secure harvests. However, resistance to all currently registered single-site fungicides is widespread. The rising importance of strains with multiple resistance to most or all fungicides is of particular concern. These strains may be introduced into fields via contaminated nursery plants and/or by immigration from adjacent plots. On the basis of research conducted in northern German and Danish strawberry production, a concept to manage fungicide resistance under northern European conditions has been developed and put into regional strawberry production practice. This principally includes the testing of nursery plants for fungicide-resistant Botrytis strains prior to planting; the restricted and specific use of fungicides at flowering in the production fields, taking account of the resistance spectrum within the local Botrytis population; and crop sanitation measures such as the removal of rotting fruits at the beginning of harvest. Further options such as protected cultivation, reduced fertilisation and biological control are also discussed. The practical implementation of such a strategy in northern Germany and Denmark has been shown to reduce the occurrence of multi-resistant strains to a tolerable steady-state level. Full article
Show Figures

Figure 1

14 pages, 381 KiB  
Review
The Controversial Nature of Some Non-Starter Lactic Acid Bacteria Actively Participating in Cheese Ripening
by Svetoslav G. Dimov
BioTech 2023, 12(4), 63; https://doi.org/10.3390/biotech12040063 - 09 Nov 2023
Viewed by 1364
Abstract
This mini review deals with some controversial non-starter lactic acid bacteria (NSLAB) species known to be both human and animal pathogens but also health-promoting and probiotic. The focus is on Lactococcus garvieae, two Streptococcus species (S. uberis and S. parauberis), [...] Read more.
This mini review deals with some controversial non-starter lactic acid bacteria (NSLAB) species known to be both human and animal pathogens but also health-promoting and probiotic. The focus is on Lactococcus garvieae, two Streptococcus species (S. uberis and S. parauberis), four Weissella species (W. hellenica, W. confusa, W. paramesenteroides, and W. cibaria), and Mammalicoccus sciuri, which worldwide, are often found within the microbiotas of different kinds of cheese, mainly traditional artisanal cheeses made from raw milk and/or relying on environmental bacteria for their ripening. Based on literature data, the virulence and health-promoting effects of these bacteria are examined, and some of the mechanisms of these actions are reviewed. Additionally, their possible roles in cheese ripening are also discussed. The analysis of the literature data available so far showed that, in general, the pathogenic and the beneficial strains, despite belonging to the same species, show somewhat different genetic constitutions. Yet, when the safety of a given strain is assessed, genomic analysis on its own is not enough, and a polyphasic approach including additional physiological and functional tests is needed. Full article
14 pages, 1409 KiB  
Article
Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study
by Eldon R. Jupe, Gerald H. Lushington, Mohan Purushothaman, Fabricio Pautasso, Georg Armstrong, Arif Sorathia, Jessica Crawley, Vijay R. Nadipelli, Bernard Rubin, Ryan Newhardt, Melissa E. Munroe and Brett Adelman
BioTech 2023, 12(4), 62; https://doi.org/10.3390/biotech12040062 - 09 Nov 2023
Cited by 1 | Viewed by 1161
Abstract
(1) Objective: Systemic lupus erythematosus (SLE) is a complex disease involving immune dysregulation, episodic flares, and poor quality of life (QOL). For a decentralized digital study of SLE patients, machine learning was used to assess patient-reported outcomes (PROs), QOL, and biometric data for [...] Read more.
(1) Objective: Systemic lupus erythematosus (SLE) is a complex disease involving immune dysregulation, episodic flares, and poor quality of life (QOL). For a decentralized digital study of SLE patients, machine learning was used to assess patient-reported outcomes (PROs), QOL, and biometric data for predicting possible disease flares. (2) Methods: Participants were recruited from the LupusCorner online community. Adults self-reporting an SLE diagnosis were consented and given a mobile application to record patient profile (PP), PRO, and QOL metrics, and enlisted participants received smartwatches for digital biometric monitoring. The resulting data were profiled using feature selection and classification algorithms. (3) Results: 550 participants completed digital surveys, 144 (26%) agreed to wear smartwatches, and medical records (MRs) were obtained for 68. Mining of PP, PRO, QOL, and biometric data yielded a 26-feature model for classifying participants according to MR-identified disease flare risk. ROC curves significantly distinguished true from false positives (ten-fold cross-validation: p < 0.00023; five-fold: p < 0.00022). A 25-feature Bayesian model enabled time-variant prediction of participant-reported possible flares (P(true) > 0.85, p < 0.001; P(nonflare) > 0.83, p < 0.0001). (4) Conclusions: Regular profiling of patient well-being and biometric activity may support proactive screening for circumstances warranting clinical assessment. Full article
(This article belongs to the Special Issue Feature Papers in Computational Biology)
Show Figures

Figure 1

26 pages, 2214 KiB  
Hypothesis
Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog
by Gerald H. Lushington, Annika Linde and Tonatiuh Melgarejo
BioTech 2023, 12(4), 61; https://doi.org/10.3390/biotech12040061 - 30 Oct 2023
Viewed by 1368
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among [...] Read more.
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming. Full article
Show Figures

Figure 1

14 pages, 4060 KiB  
Article
Human TIMP1 Is a Growth Factor That Improves Oocyte Developmental Competence
by Yolanda Manríquez-Treviño, Blanca Sánchez-Ramírez, Juan Alberto Grado-Ahuir, Beatriz Castro-Valenzuela, Carmen González-Horta and M.Eduviges Burrola-Barraza
BioTech 2023, 12(4), 60; https://doi.org/10.3390/biotech12040060 - 08 Oct 2023
Viewed by 1349
Abstract
Oocyte developmental competence is the ability of a mature oocyte to be fertilized and subsequently support embryonic development. Such competence is gained during folliculogenesis and is facilitated by the bidirectional communication into a compacted cumulus–oocyte complex (COC). Human tissue inhibitor of metalloproteinases-1 (TIMP1) [...] Read more.
Oocyte developmental competence is the ability of a mature oocyte to be fertilized and subsequently support embryonic development. Such competence is gained during folliculogenesis and is facilitated by the bidirectional communication into a compacted cumulus–oocyte complex (COC). Human tissue inhibitor of metalloproteinases-1 (TIMP1) participates in biological processes, including cell growth, differentiation, and apoptosis. This study aimed to evaluate the influence of TIMP1 as a growth factor on the in vitro maturation (IVM) culture of bovine COCs to improve oocyte developmental competence. All TIMP1 treatments (50, 100, and 150 ng/mL) favored the COCs’ compaction structure (p < 0.05). TIMP1 at 150 ng/mL produced more oocytes in metaphase II compared to the other treatments (p < 0.05). The 150 ng/mL TIMP1 generated oocytes with the most (p < 0.05) cortical granules below the plasma membrane (pattern I). In a parthenogenesis assay, oocyte IVM in 50 ng/mL of TIMP1 produced the most blastocyst compared to the other treatments (p < 0.05). The Principal Component Analysis (PCA) showed that 50 ng/mL of TIMP1 was the best condition to develop oocyte competence because it was associated with the COC compact and cortical granule pattern I. TIMP1 influences the development of oocyte competence when added to the IVM culture medium of COCs. Full article
(This article belongs to the Section Agricultural and Food Biotechnology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop