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Abstract: This mini review deals with some controversial non-starter lactic acid bacteria (NSLAB)
species known to be both human and animal pathogens but also health-promoting and probiotic. The
focus is on Lactococcus garvieae, two Streptococcus species (S. uberis and S. parauberis), four Weissella
species (W. hellenica, W. confusa, W. paramesenteroides, and W. cibaria), and Mammalicoccus sciuri, which
worldwide, are often found within the microbiotas of different kinds of cheese, mainly traditional
artisanal cheeses made from raw milk and/or relying on environmental bacteria for their ripening.
Based on literature data, the virulence and health-promoting effects of these bacteria are examined,
and some of the mechanisms of these actions are reviewed. Additionally, their possible roles in cheese
ripening are also discussed. The analysis of the literature data available so far showed that, in general,
the pathogenic and the beneficial strains, despite belonging to the same species, show somewhat
different genetic constitutions. Yet, when the safety of a given strain is assessed, genomic analysis on
its own is not enough, and a polyphasic approach including additional physiological and functional
tests is needed.

Keywords: non-starter lactic acid bacteria (NSLAB); Lactococcus garvieae; Streptococcus uberis; Strep-
tococcus parauberis; Weissella hellenica; Weissella confusa; Weissella paramesenteroides; Weissella cibaria;
Mammalicoccus sciuri

Key Contribution: This review summarizes, based on literature data, the information available for
some controversial NSLAB participating in the ripening of different kinds of cheese.

1. Introduction

Recently, customers worldwide have shown increased interest in consuming fermented
dairy foods given their perceived properties as functional foods and their potential health
benefits. In this regard, special attention was given to traditional, artisanally produced
kinds of cheese, which are highly priced and which, in many cases, are prepared from
raw milk and/or they rely on environmental microbiota for their ripening. Commonly,
this environmental microbiota comes from the ambient environment (waters, pastures,
air, etc.), but it also comes from human and animal external (skin, furring) and internal
environments (gastrointestinal tract (GIT), mammary glands, etc.). Environmental bacteria
can be commensal or pathogenic in nature. The bacteria that occur in milk, which is a very
nutritionally rich environment, can adapt to this new environment and assimilate the milk
sugars, proteins, and fats. These adaptations are in two main directions, the loss of some
virulence determinants and the acquisition of genetic changes, allowing better assimilation
of the milk’s nutrients. Often, by becoming part of the dominant autochthonous microbiota,
these “new dairy bacteria” play an essential role in cheese ripening by contributing to
specific organoleptic and rheological properties [1–3].

Typical examples of controversial NSLAB species, which actively participate in cheese
ripening, are the members of the genus Enterococcus, which also could be opportunistic
human and animal pathogens or probiotics, and have been investigated in both of these
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aspects for decades [4]. However, in the last decade, with the advent of the next-generation
sequencing (NGS) techniques used for metagenomic studies of different kinds of cheese,
several ubiquitous newcomers were revealed within the group of controversial NSLAB.
Some of the most controversial omnipresent NSLAB belong to the genera Lactococcus,
Streptococcus, Weissella and Mammalicoccus (Table 1).

Table 1. Some examples of controversial NSLAB participating in cheese ripening.

Genus Species Some Examples of Cheeses References

Lactococcus L. garvieae

Italian mozzarella cheeses
Italian Toma Piemontese cheese

Spanish Casín cheese
Spanish “Torta del Casar” cheese
Slovakian May bryndza cheese

Azorean Pico cheese
Montenegrian brine cheeses

Bulgarian and Turkish Tulum cheeses
Bulgarian “Green” cheese

Bulgarian Krokmach cheese

[5,6]
[7]
[8]
[9]

[10]
[11]
[12]

[13,14]
[15]
[16]

Streptococcus S. uberis
Italian Mozzarella cheese

Spanish Casín cheese
Italian Casizolu cheese

[6]
[8]

[17]

S. parauberis

Spanish Cabrales cheese
Spanish Casín cheese

Iranian Lighvan and Koozeh cheese
Slovenian raw milk cheeses

Slovakian May bryndza cheese
Italian Casizolu cheese
Italian Giuncata cheese

Italian Caciotta Leccese cheese
Bulgarian and Turkish Tulum cheeses

[18]
[8]

[19]
[20]
[10]
[17]
[21]
[21]

[13,14]

Weissella W. hellenica

Danish raw milk cheeses
a type of Croatian cheese

Brazilian artisanal cheeses
Italian Mozzarella cheese

[22]
[20]
[23]
[24]

W. confusa
Turkish Sepet cheese

a type of Kazak cheese
a type of Indonesian cheese

[25]
[26]
[27]

W. paramesenteroides

a type of Mexican ripened cheese
some traditional French cheeses
Columbian double cream cheese

Greek Manura cheese
Turkish Sepet cheese

[28]
[29]
[30]
[25]
[26]

W. cibaria Afrikan Tchoukou cheese
Western Himalayan cheese

[31]
[32]

Mammalicoccus M. sciuri

French smear cheeses
some German cheeses
some Brazilian cheeses

Middle East Surk cheese

[33]
[34]
[35]
[36]

2. Lactococcus garvieae

The Lactoccus genus was separated from the genus Streptococcus in 1985 as result of
thorough DNA-based analysis such as nucleic acid hybridization studies and immunologi-
cal relationships of superoxide dismutase [37], together with the early reported species as
Streptococcus garvieae [38]. L. garvieae is a species with a pronounced dualistic nature, partic-
ipating in the ripening of many cheeses worldwide but also being known as a pathogen.
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This species is mainly known as the causative agent of fish lactococcosis associated with
hyperacute and hemorrhagic septicemia, leading to substantial economic losses [39]. The
species is generally considered safe for humans and farm animals; nonetheless, it has been
associated with bovine mastitis [40]. Rare cases of endocarditis in old and immunocom-
promised persons were also reported [41], as well as affecting patients with prosthetic
valves [42] (Table 2). On the other hand, L. garvieae has been reported to be present in dif-
ferent environmental niches, including plant sprouts [43], as well as in different fermented
foods such as fermented sausages [44], but mainly in fermented dairy products, including
many types of cheese worldwide.

Table 2. Examples of pathogenicity of the bacteria investigated in this study.

Species Pathogenicity References

L. garvieae
fish lactococcosis
bovine mastitis

endocarditis in immunocompromised and old persons

[39]
[40]
[41]

patients with prosthetic valves [42]

S. uberis bovine mastitis
occasional human infections

[45]
[46]

S. parauberis
bovine mastitis
fish pathogen

rare cases of infection in humans

[45]
[47]

[48,49]

W. hellenica no records

W. confusa
bacteremia

endocarditis
deadly infections in primates

[50]
[51]
[52]

W. paramesenteroides no records

W. cibaria bacteremias in humans
otitis in dogs

[53]
[54]

M. sciuri

human wound infections
urinary tract infections
endocarditis in humans

sepsis in humans
endophtalmitis in humans

peroitonitis in humans
plevric inflammatory disease in humans

mastitis in cows and goats
epidermitis in piglets

presence in ovine rinderpest suffering animals
respiratory distress syndrome in cats and dogs

[55]
[56]
[57]

[58,59]
[60]
[61]
[62]

[63,64]
[65]
[66]
[67]

One of the earliest reports of L. garvieae in cheese dates from 2001, when it was found
to be part of the microbiota of some traditionally prepared mozzarellas [5,6]. Later, it
was reported worldwide to be found in many kinds of cheese prepared mainly from raw
milk and/or without the addition of starter cultures, such as the Italian Toma Piemontese
cheese [7], the Spanish Casín cheese [8] and “Torta del Casar” cheese [9], the Slovakian
May bryndza cheese [10], the Azorean Pico cheese [11], some traditional Montenegrin
brine cheeses [12], some Bulgarian and Turkish “Skin bag” (Tulum) cheeses [13,14], and the
Bulgarian “Green” [15] and Krokmach [16] cheeses (Table 1).

It has been reported that when present within the dominant microflora, dairy L. garvieae
strains positively contribute to cheese ripening and palatability [68], and they are also par-
tially responsible for the typical sensorial characteristics of the final product [69]. It has
been proven that dairy-related strains are lactose fermenters, despite the relatively slow
acidification rate [69] (Table 3). Their presence does not affect the main physicochemi-
cal properties such as humidity, water activity, pH, texture, or color while contributing
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positively to the aroma with the production of methyl-branched acids and reducing the
oxidation compounds originating from the β-oxidation of fatty acids present within the
milk [70].

Table 3. Contribution to the ripening and health-promoting effects of the NSLAB reviewed in this
study.

Species Contribution to the Ripening References Health-Promoting and Probiotic
Effects References

L. garvieae

palatability
sensorial characteristics

lactose fermentation
aroma

[68]
[69]
[69]
[70]

inhibition of pathogens [9,71–74]

S. uberis streptokinase induced proteolysis [75] inhibition of pathogens [54,76]

S. parauberis streptokinase induced proteolysis
organoleptic properties

[77]
[78]

Weissella spp.

contribution to the rheological
properties by EPS production [32,79] synthesis of EPS

bacteriocins production
hydrogen peroxide production

inhibition of H. pylori
antifungal activities

chemopreventive effects
anti-obesity effects

antiviral activity

[32,79–85]
[83,86,87]

[82,88]
[89]

[90,91]
[92]
[93]
[82]

coagulation of the milk proteins [53,80]

organoleptic properties [23,81]

M. sciuri organoleptic properties [94–96] no definitive data

Inhibitory activity against pathogens and spoiling agents has also been reported
for some dairy L. garvieae strains. Some of the main manifestations of this property are
the documented inhibition of Listeria monocytogenes [9] and Staphylococcus aureus [71].
This bacteriostatic effect could be due to nutritional competition or hydrogen peroxide
production [72]. However, lactococci are known bacteriocin producers, and dairy-related
members of the genus are not an exception. Some examples are the broad-spectrum
bacteriocins garvicin KS with inhibitory activity against Bacillus, Listeria, Enterococcus,
and Staphylococcus [73] and garviecin L1-5 with inhibitory activity against Clostridium,
Enterococcus, Lactococcus, and Listeria [74] (Table 3). These inhibitory and/or bacteriostatic
properties are currently heavily exploited, and to control Listeria growth, some authors
propose the addition of selected L. garvieae strains as NSLAB within starter cultures [9] and
even their inclusion within edible cheese coatings [97].

There is much scientific proof that dairy-derived L. garvieae strains show different
genetic constitutions from the pathogenic ones. First, they can grow on milk because of
their ability to assimilate lactose. Fortina et al. [7] report that dairy isolates possess the
genes necessary for lactose catabolism, while these genes are absent in the fish pathogens.
Furthermore, these genes are located on the bacterial chromosome in contrast to the cheese
“big classic” L. lactis [98]. These observations are further confirmed by the study of Foschino
et al., who found that L. garvieae from the two ecological niches are genetically divergent,
even with the limitations of the DNA fingerprint techniques which were widely used at this
time [99]. Additionally, dairy-derived strains lack some of the pathogenicity phenotypes:
they are non-agglutinating [43], they do not produce hemolysins and gelatinase, and many
of the dairy strains lack the tetM and tetS genes encoding tetracyclines resistances. [69] All
these findings suggest that they have low virulence and pathogenicity profiles [12].

Taking these issues into account, L. garvieae should be considered an essential and
promising NSLAB that contributes positively to the ripening process and to the quality of
the product. Nonetheless, to be applied as an additive to starter cultures, because of the
controversial nature of the species, a thorough study of each strain should be conducted
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to guarantee its safety, for example, through whole-genome sequencing combined with
phenotype characteristics [12].

3. Streptococcus uberis and Streptococcus parauberis

Half a century ago, S. uberis was reported to be the causative agent of clinical and
subclinical cases of bovine mastitis [45]. A decade later, based on some phenotypic char-
acteristics, S. parauberis, which was also documented as a bovine mastitis causative agent,
was separated from S. uberis as a different species [100]. The new species also turned out
to be a fish pathogen [47], while S. uberis was only detected in water environments and
fishes without being associated with pathogenesis [101]. It has been documented that these
species possess good environmental survival capabilities [102], which can explain why they
are responsible for a significant proportion of clinical mastitis cases [103]. S. uberis has been
occasionally associated with human infection; however, there is scientific evidence that in
these cases, it has probably been misidentified [46]. In recent years, in the scientific litera-
ture, rare cases of infections in humans caused by S. parauberis have been reported [48,49]
(Table 2). Although, in both cases, traumatism was involved, and human biological barriers
were not passed through in a natural way. Both species have been shown to be present
in different ecological niches in dairy farms, such as wastewater disposal sites, raw milk,
udder, cow skin, grass, and soil [104].

Since both species are widely spread in the environment, and because of their ability
to infect the cattle mammary glands, it is not surprising to find them in milk and fermented
dairy products prepared from raw milk (Table 1). S. uberis has been detected for the first time
among the dominant microbiota of a mozzarella cheese [6], while S. parauberis was reported
as a dominant species for the Spanish blue-veined Cabrales cheese [18]. In combination
or separately, both species have been observed in high amounts in many kinds of cheese
worldwide. Some examples include the traditional Spanish Casín cheese [8], the Iranian
Lighvan and Koozeh cheeses [19], some Slovenian raw milk cheeses [20], the Slovakian
May bryndza cheese [10], the Italian Casizolu [17], Giuncata and Caciotta Leccese [21]
cheeses, the Turkish Tulum cheese [14], and the Bulgarian Mehovo sirene cheese [13].

The observation of high amounts of S. uberis and S. parauberis within the cheese
microbiotas means that they play a role in the ripening process (Table 3). It was reported
that S. uberis produces an extracellular protein named streptokinase which activates the
plasminogen to active plasmin, which in turn, results in plasmin-induced proteolysis of the
milk proteins [75]. Initially, this mechanism evolved for the development of mastitis;
however, it also contributes to the ripening of the cheeses. The same mechanism of
S. parauberis was observed and studied during the ripening process of the Azerbaijani
Lighvan cheese [77].

S. thermophilus is known to contribute significantly to flavor development [105], so
it is logical to expect that in the ripening process, other members of the genus should
play, to some extent, the same role. Indeed, Yang et al. [78] report a positive correlation
between some of the organoleptic properties of several cheese samples and the high content
of S. parauberis within their microbiota. These authors explain their observation with the
findings that some S. parauberis strains are capable of producing enzymes needed to produce
linear alkanes and alcohols.

In contrast to L. garvieae isolates which split into a pathogenic and dairy lineage, not
surprisingly, no such observations have been detected for the S. uberis and S. parauberis
isolates since they originate from environmentally infected cattle. Still, in addition to
their participation in the cheese ripening process and the development of palatability,
because of their ability to inhibit the growth of some other pathogens and spoiling agents,
some isolates have additional beneficial effects on the final product (Table 3). Tulini
et al. report the isolation of bacteriocin-producing S. uberis strains from Brazilian cheese
inhibiting the growth of Carnobacterium maltaromaticum, Latilactobacillus sakei, and Listeria
monocytogenes [76]. Antagonistic activity of S. uberis was also reported for several cheese



BioTech 2023, 12, 63 6 of 14

isolates from Serbia, and the authors report that these isolates are also susceptible to
antibiotics [106].

4. The Genus Weissella

Based on a comparative analysis of 16S rRNA genes, the Weissella genus was separated
from the Leuconostoc genus in 1993, with W. hellenica as a novel species isolated from a
type of Greek sausage [107]. Soon after, it became apparent that the genus possesses a
controversial nature, comprising species with clear pathogenic potential and species with
strong probiotic properties and potential for the food industry. Unfortunately, some species
of the genus comprise strains with beneficial properties, but others have been proven to
possess pathogenic properties [82].

Among Weissella species, mainly W. hellenica, W. confusa, W. cibaria, and W. parame-
senteroides were reported to participate in the fermentation of dairy products [21]. Until
now, there were no scientific reports on the association of W. hellenica and W. paramesen-
teroides with clinical cases or infections in humans or animals. In contrast, W. confusa is
definitely a species with a dualistic nature—some isolates have been reported as pathogens
while others have been reported as probiotics (Tables 2 and 3). In addition to being found
within the gastrointestinal tract of healthy humans [108], W. confusa has been reported
to cause bacteremia [50] and endocarditis [51] in humans and even deadly infections in
primates [52]. On the other hand, many strains of the same species possess different strong
probiotic properties, including the antibacterial activity against E.coli of a strain isolated
from kimchi [23,89,109,110]. W. cibaria was first considered as a human and animal com-
mensal species which can be isolated from feces, saliva, and vaginal mucous; the species
also emerged as an opportunistic pathogen associated with human blood and lung swab
bacteremias, as well as being isolated from human urine [53]. It has also been linked to
otitis in dogs [54]. Similarly to W. confusa, for many W. cibaria isolates, probiotic properties
have been documented [88,111].

The different Weissella species have been reported to be part of the microbiotas of many
kinds of cheese worldwide, mainly artisanal and/or those prepared from raw milk (Table 1).
W. hellenica was reported to be found in Danish raw milk cheeses [22], Croatian cheese [20],
several Brazilian artisanal cheeses [23], and traditional Italian mozzarella cheese [24]. Some
examples of cheeses in which W. paramesenteroides are present within their microbiota
include a type of a Mexican ripened cheese [28], some traditional French cheeses [112],
the Columbian double cream cheese [29], the Greek hard cheese Manura [30], and the
traditional Turkish Sepet cheese [25]. W. confusa was also reported to be present in the
latter [25]. It was also found within the microbiotas of Kazak cheese [26] and a specific
kind of Indonesian cheese [27]. Similarly to the other three species, W. cibaria has been
reported to be part of the microbiotas of different cheeses around the globe—within the
West African Tchoukou cheese [31] and within a cheese from the Western Himalayas [32].
Moreover, because of their probiotic properties, some W. cibaria are often added as adjunct
cultures [81].

The role of Weissella species in cheese ripening is to a great extent linked to their
beneficial and health-promoting effects due to the synthesis of exopolysaccharides (EPS)
or the inhibition of pathogens [82,83,113] (Table 3). By synthesizing EPS [32,79], they
contribute to the rheological properties. On the other hand, due to their ability to produce
lactic acid and other low molecular weight acids by assimilating lactose and galactose, they
not only inhibit the growth of some potential pathogens and soiling agents, but they also
contribute to the coagulation of milk proteins [23,80]. Another significant role of dairy
Weissella isolates is related to lipolytic and proteolytic activities, which in turn contribute to
the development of the aroma and flavor [81]. Many strains are reported to produce the
volatile compound diacetyl resulting from the conversion of citrate to pyruvate and are
related to the “buttery” aroma [23].

Many different Weissella spp. isolates have been proven to possess probiotic and health-
promoting effects such as the production of EPS; they possess antioxidant activity, can
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transform prebiotics, and have antimicrobial activities due to the production of hydrogen
peroxide, organic acids, and bacteriocins. For W. cibaria, W. confusa, and W. paramesenteroides,
which can also be found in cheese and dairy environments, good survival capabilities within
the gastrointestinal tract (GIT), alongside the ability to transform prebiotic fibers, have been
reported [83].

Different Weissella isolates from different types of samples are among the most potent
producers of different types of linear and branched EPS, such as glucans, dextrans, mannose,
and glucose and galactose homo- and heteropolysaccharides. For many of them, beneficial
biological probiotic and prebiotic properties such as antioxidant activity, antimicrobial
activities, immunomodulatory activity, prebiotic potential, and stimulation of the growth
of probiotic bacteria have been reported [82,84]. Cheese-derived W. cibaria and W. confusa
isolates are also reported to be EPS producers [32,85]. Because of both the EPS’s health-
beneficial effects and their attribution to the rheological properties of cheese, EPS-producing
strains are often added as adjunct NSLAB cultures in cheese production [81].

One of the mechanisms of the antibacterial activity against pathogens of Weissella spp.
is the production of bacteriocins [79,86,87]. Yet, the antimicrobial action against pathogens
can also result from the synthesis of organic acids, EPS, or hydrogen peroxide [83,111].
Hydrogen peroxide production has been proven to have an oral health-promoting effect
such as the inhibition of Streptococcus mutans and Fusobacterium nucleatum, which are
causative agents of plaque formation and periodontitis [82,88]. A W. confusa isolate was
reported to inhibit Helicobacter pylori’s growth and to block its binding to the stomach [89].
The antilisterial and antioxidant activities of a W. cibaria isolate were exploited with its
addition as an adjunct NSLAB culture [113]. Furthermore, antifungal activities of food-
isolated Weissella strains were discovered. A W. paramesenteroides strain was shown to
inhibit food molds with the production of phenyllactic acid, 2-hydroxy-4-methylpentanoic
acid, and other organic acids [90], while a W. cibaria sourdough isolate showed potent
inhibitory activity against Aspergillus niger, Penicillium roqueforti, and Endomyces fibuliger
with an uninvestigated mechanism [91].

Some additional health-promoting and beneficial effects have been identified in some
Weissella spp. strains. For example, both antitumor and chemo-preventive effects [92] and
anti-obesity effects [93] have been reported. Immunomodulating, anti-inflammatory, and
antiviral activity have also been observed [82].

Because of the many probiotic and health-promoting effects, Weissella spp. are of
great interest to the pharmaceutical and food industries. Yet, because of the controversial,
dualistic nature of the representatives of the genus, one should take great caution before
attributing a “generally recognized as safe” (GRAS) status to a Weissella isolate. Without any
doubt, each promising isolate should be investigated separately. It can be carried out via
whole genome sequencing and bioinformatic analysis for the presence of genes encoding
probiotic determinants and genes encoding virulence factors. Though, in silico analysis
is not enough to assess the virulence potential of a given isolate because some genetic
determinants for virulence factors are intrinsic to the genus, as is the case for many LAB of
other genera with a GRAS status, while at the same time, some other genetic determinants
could contribute to the probiotic potential [82]. So, to characterize newly isolated Weissella
strains, a polyphasic approach comprising both genomic analyses and physiological and
functional tests would give the most accurate results [114].

The presence of genes encoding haemolysins and haemolysin-like proteins appears
to be ubiquitous in many LAB [114] and can often be revealed with in silico analyses of
Weissella genome sequences [82]. For this reason, it is largely believed that they should not
be regarded as an exclusion factor for a probiotic isolate [82,114].

Another potential trait of concern is the presence of antibiotic resistance (AR) genes.
Yet, the resistance to some commonly used classes of antibiotics, such as glycopeptides
(vancomycin), aminoglycosides (gentamycin, kanamycin), and sulphonamides, is in many
cases intrinsic to many LAB, including several Weissella spp. [114]. In general, if the
antibiotic resistance genetic determinants are not located on mobile genetic elements
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or plasmids, they cannot be assessed as virulence factors because they are considered
intrinsic [82]. So, in the case of AR, only phenotypic characterization is insufficient, and in-
depth genomic analysis is needed to assess the virulence potential of a given Weissella strain.

Adhesins are another factor that could raise a concern. In pathogenic bacteria, they
play an essential role in the colonization and interaction with the host [115]; yet, the same
proteins also contribute to the colonization of the health-beneficial bacteria and block the
adhesion of pathogens with a concurrence mechanism, as is the case of a probiotic W.
cibaria isolate [116]. A significant role in the adhesion of the probiotic bacteria within the
GIT is played by the mucus-binding proteins, so the presence of genetic determinants is
considered a beneficial trait, as was reported for another W. cibaria cheese isolate [32].

5. Mammalicoccus sciuri (Formerly Known as Staphylococcus sciuri)

Mammalicoccus sciuri is a member of a group of bacteria formerly known as coagulase-
negative staphylococci (CNS) before the taxonomic reclassification of some species of the
genus Stpahylococcus. The CNS are a group of bacteria found among the predominant
species in many fermented foods worldwide [95]. M. sciuri was first identified as Staphylo-
coccus sciuri in 1976 as a new species of the so-called group III staphylococci, which were
reported to be human and animal skin commensals [117]. It was reclassified in 2020 as a
member of the new genus Mammalicoccus of the Staphylococcaceae family [118]. Within time,
some M. sciuri strains were reported to possess strong pathogenic potential for humans and
animals. In humans, it has been reported to be a causative agent of wound infections [55],
urinary tract infections [56], endocarditis [57], sepsis in adults [59] as well as neonatal
sepsis [58], endophtalmitis [60], peritonitis [61], and plevric inflammatory disease [62].

M. sciuri strains have been isolated mainly from warm-blooded animals, comprising
farm animals, pets, and wild animals. Often, this species is found in a large variety of
healthy farm animals such as pigs, poultry, sheep, goats, and horses [63], but also in
a broad range of wild animals—rodents, carnivores, monkeys, and even cetaceans and
marsupials [119]. However, potentially pathogenic strains are often recovered from farm
animals such as pigs, cows, and broilers [120], and it is not surprising that members of this
species are causative agents of mastitis in dairy cattle (cows and goats) [63,64], as well as
severe epidermitis in piglets [65]. The species was also discovered in goats suffering from
ovine rinderpest [66]. It has also been associated with fatal infections in pets (dogs and
cats), causing acute respiratory distress syndrome [67] (Table 2).

Different CNS species have been identified as part of the dominant and subdominant
microflora of many kinds of traditional cheeses [33,34] (Table 1). M. sciuri, despite being
mainly associated with the ripening of fermented meat products such as cured meats and
sausages [95,96,121], has also been found in French smear cheeses [33], German cheeses [34],
Brazilian cheeses [35], and the traditional Middle East Surk cheese [36] (Table 1).

Even though it is not especially studied, the role of M. sciuri in the ripening of fer-
mented foods could not be very different from that of other CNS. It has been reported
that food-derived staphylococci contribute mainly to organoleptic properties (Table 3).
This function is achieved thanks to the catabolism of carbohydrates and amino acids, but
also the synthesis of esters. Small flavor compound molecules are also produced by some
aspects of their proteolytic and lipolytic activities [95,96]. A correlation between the smell
and the presence of M. sciuri has been investigated, and it was found that this species, in
combination with some yeasts, is responsible for the olfactory characteristics of some green
cheeses [94].

Although there are some sporadic reports of the isolation of M. sciuri strains with
probiotic activity [122], in general, because of the species’ relatively strong pathogenic
potential, as well as the lack of isolates with attributed GRAS status in the United States or
QPS status in the European Union, the question of the health-promoting effects should be
considered with great caution.

There are no comparative studies on the genetic lineages and constitution of pathogenic
M. sciuri isolates and those derived from fermented foods, while similar investigations
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on other CNS are relatively scarce. One of the main concerns of using these bacteria as
adjunct cultures is that they usually carry genetic determinants for virulence factors. An
example is the presence of genes encoding hemolysins. Nevertheless, there are reports
that the presence of such factors does not always imply a hemolytic phenotype, and their
presence in food-derived CNS is generally sporadic [96]. Another concern is their ability to
produce biogenic amines such as cadaverine, putrescine, histamine, and tyramine, which
could cause food poisoning. However, comparative genomic analysis showed that they
usually lack the necessary genes. These findings are greatly supported by the fact that until
now, cases of food poisoning due to CNS were never reported [95].

The presence of AR genes could be another indicator of pathogenicity. Within the
group of CNS, one of the most predominant AR is the methicillin resistance, encoded by
the mecA gene. Interestingly, although the presence has been reported in many M. sciuri
isolates, it is usually not sufficient to confer resistance, except if other regulators mec-genes
are also present as part of a mobile genetic element known as staphylococcal cassette
chromosome (SCCmec) [123]. So, similarly to the other dualistic NSLAB discussed already,
the pathogenic potential of the AR genes depends on whether they are located in mobile
elements, while the intrinsic AR represent low risk [96]. Additional hazard comes from
the fact that M. sciuri possesses a vast range of habitats, including wild animals and
environments, which could serve as a reservoir for pathogenicity determinants, which in
turn could be passed to dairy strains via horizontal genetic transfer [120].

6. Conclusions

Taking into account the considerations above, based on genomic, functional, and
physiological analyses, several conclusions for the controversial NSLAB of the genera Lac-
tococcus, Streptococcus, Weissella, and Mammalicoccus could be made. First, it is scientifically
proven that they contribute to the ripening of cheeses by influencing the organoleptic
and rheological properties. Second, the food-related strains usually differ in their genetic
constitution and phenotypic characteristics from the pathogenic strains. Third, many food-
and dairy-related strains possess probiotic and health-promoting properties, giving charac-
teristics of functional food to the products they ferment. Finally, to evaluate the safety of
each isolate of these controversial genera, a polyphasic approach should be undertaken,
combining genomic analyses, physiological, and functional studies. These analyses, espe-
cially those concerning whole-genome sequencing and the comparison of the sequences of
health-promoting and pathogenic isolates, could be a starting point in the future for new
taxonomic speciation for some of the strains of controversial species.
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