Next Issue
Volume 5, March
Previous Issue
Volume 4, September
 
 

Appl. Nano, Volume 4, Issue 4 (December 2023) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 2178 KiB  
Article
Oral Delivery of mRNA by Liposomes Functionalized with Cell-Penetrating Peptides
by Valerie Dürr, Sabrina Wohlfart, Tom Eisenzapf, Walter Mier, Gert Fricker and Philipp Uhl
Appl. Nano 2023, 4(4), 293-308; https://doi.org/10.3390/applnano4040017 - 09 Nov 2023
Viewed by 1429
Abstract
Lipid nanoparticles, including liposomes, have emerged as promising vehicles for the delivery of a variety of therapeutics. Several formulations have been approved and are used in medical practice—the COVID-19 mRNA vaccines represent the most recent milestone. Achieving effective oral delivery would elevate the [...] Read more.
Lipid nanoparticles, including liposomes, have emerged as promising vehicles for the delivery of a variety of therapeutics. Several formulations have been approved and are used in medical practice—the COVID-19 mRNA vaccines represent the most recent milestone. Achieving effective oral delivery would elevate the potential of these formulations. Therefore, this study investigates the oral application of mRNA using liposomes as a nanocarrier system. A cyclic cell-penetrating peptide was coupled to the liposomal surface to allow uptake into the intestinal mucosal cells. The liposomes were loaded with mRNA (up to 112 µg/mL) and characterized in terms of their size (Z-average; 135.4 nm ± 1.1 nm), size distribution (polydispersity index (PDI); 0.213 ± 0.007 nm), surface charge (2.89 ± 0.27 mV), structure, lamellarity (multilamellar liposomes), and cargo capacity (>90%). The impact of freeze-drying and long-term storage of liposomal formulations was examined, and in vitro experiments on Caco-2 cells were conducted to evaluate the cytotoxicity of the liposomal formulations and demonstrate the uptake of the liposomes into cells. The efficiency of the formulations could be proven in vitro. When compared to control liposomes and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-liposomes, the new formulations exhibited significantly enhanced uptake in Caco-2 cells, an immortalized epithelial cell line. Moreover, the cytocompatibility of the formulations could be proven by the absence of cytotoxic effects on the viability of Caco-2 cells. Hence, this liposomal drug delivery system holds significant promise for the oral delivery of mRNA. Full article
Show Figures

Figure 1

13 pages, 8151 KiB  
Article
Magnetron Sputter Deposition of Nanostructured AlN Thin Films
by Manohar Chirumamilla, Tobias Krekeler, Deyong Wang, Peter K. Kristensen, Martin Ritter, Vladimir N. Popok and Kjeld Pedersen
Appl. Nano 2023, 4(4), 280-292; https://doi.org/10.3390/applnano4040016 - 05 Oct 2023
Cited by 1 | Viewed by 1096
Abstract
Aluminum nitride (AlN) is a material of growing interest for power electronics, fabrication of sensors, micro-electromechanical systems, and piezoelectric generators. For the latter, the formation of nanowire arrays or nanostructured films is one of the emerging research directions. In the current work, nanostructured [...] Read more.
Aluminum nitride (AlN) is a material of growing interest for power electronics, fabrication of sensors, micro-electromechanical systems, and piezoelectric generators. For the latter, the formation of nanowire arrays or nanostructured films is one of the emerging research directions. In the current work, nanostructured AlN films manufactured with normal and glancing angle magnetron sputter depositions have been investigated with scanning and transmission electron microscopy, X-ray diffraction, atomic force microscopy, and optical spectroscopy. Growth of the nanostructures was realized utilizing metal seed particles (Ag, Au, and Al), allowing the control of the nucleation and following growth of AlN. It was demonstrated how variations of seed particle material and size can be used to tune the parameters of nanostructures and morphology of the AlN films. Using normal angle deposition allowed the growth of bud-shaped structures, which consisted of pillars/lamellae with wurtzite-like crystalline structures. Deposition at a glancing angle of 85° led to a film of individual nanostructures located near each other and tilted at an angle of 33° relative to the surface normal. Such films maintained a high degree of wurtzite-like crystallinity but had a more open structure and higher roughness than the nanostructured films grown at normal incidence deposition. The developed production strategies and recipes for controlling parameters of nanostructured films pave the way for the formation of matrices to be used in piezoelectric applications. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop